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Monte Carlo(MC) results are reported for the melting of two-dimensional systentd bérd disks in the
NpT ensemble both for hard crystalline walt®or N=900, 3844, and 15 876and for periodic boundary
conditions (for N=64, 256, 400, 576, 1024, and 409&ong Monte Carlo runge.g., up to 3% 10° MC
sweeps foN=15 876, and X 10® MC sweeps foN=1024 give equilibriumresults. We obtain mean values
and fluctuations of the volume, of the orientational order paramgtemd of the crystalline structure factor.
Our main conclusions follow(1) the melting transition is of second ord€®) ( ¢) drops discontinuouslgfrom
(¢)=0.74+0.02) to zero at the melting point; ari8) we find no hexatic phadéf it exists for systems of hard
disks, then the range for it is within about 1% of the melting volume Jal®1063-651X97)10201-X]

PACS numbdps): 64.70.Dv, 61.20.Ja, 05.70.Fh

I. INTRODUCTION algebraically with distancéwith a critical indexzg that var-
ies betweenys=0 atv=v,, and g=3 atv=uv;); and (4)
Despite the enormous effort spent studying two-the critical behavior of the orientational correlation length in
dimensional melting over a time span of several decades, th@e isotropic phase is given kig~expb/\v —v;). The ex-
nature of this phase transition remains a matter of controtent of the hexatic phase was not determined by NH
versy. It differs qualitatively from melting ithree dimen- (vi—v,, may in fact vanish altogether
sions. As was first shown by Peiefts] and by LandayZ], Other melting mechanisms, such as grain boundary for-
long wavelength phonons destroy long-range crystalline O'mation[7] have also been proposed. Many experimental re-
sults[8—10] seem to support the two-stage melting scheme

der in two dimensiongthat is, the density cannot be a peri-
odic function of position over all spakeA rigorous proof of that has come to be known as the theory of Kosterlitz, Thou-
less, Halperin, Nelson, and YourfgTHNY) [4—6]. Many

it was provided by Mermin, who also pointed out that orien-
tational long-range order can nevertheless exist in two di- : )
mensiong2D) [3]. The theory of Nelson and HalperihiH) computer simulations had already been performed before the

was an important step toward understanding melting in 2II§<THNY theory came abouf11,12. Computer runs were

[4,5. In this theory, free dislocations destroy weak crystal-necessarily short then, and no firm conclusions could be
line order above the melting point, much as free vorticed®ached. Later, some support for the KTHNY scenario was
destroy weak magnetic long-range order in the paramagnetféawn from somg13-15 but not all molecular dynamics
phase of theXY model in 2D, in the theory of Kosterlitz and simulations[16]. On the other hand, first order transitions
Thouless[6]. However, since dislocations do not, by them- have most often been diagnosed from Monte C4MCT)
selves, obliterate orientational order, the existence of a norsimulation result§17-22. Lee and Strandburg recently ob-
crystalline, nonisotropic phasgeferred to by NH as the tained equilibrium results for small systems through MC
hexatic phase is, therefore, possible in this theory. Other simulations, in the constant pressure ensemble, of up to a
topological defects(referred to asdisclinations by NH)  few hundred disks for about 1MC sweepg20]. They ob-
would destroy orientational order completely when the sys+tained results for volume fluctuations and the free energy
tem is expanded beyond a second critical point intoisee  barrier,AG, between the solid and the liquid phases. Knowl-
tropic phase. edge of volume fluctuations is important because the latent
Let vy, andv; be the specific volumes for the crystalline- heat AQ of the transition, if there is one, follows from it
hexatic and for the hexatic-isotropic transitions, respectively(AQ=pAV for a system of hard disks, since there is no
The main predictions of NH arél) density correlations de- internal energy In addition,AG must increase as the sys-
cay algebraically with distance in the crystalline phase, withtem’s surface for a first order transitipp3]. Lee and Strand-
a critical index » that increases withy up to <3 at burg’s data for systems of up to a few hundred particles
v=vn; (2) asv increases, the orientational order parameteshow a trend that points to a first order phase transition. Our
drops discontinuouslgby an undetermined amoyrib a null  own result§24], and those of Bagchi, Andersen, and Swope
value atv =v,; (3) in the hexatic phase, density correlations[25], seem to be the only recent ones to come out of MC
decay exponentially, while orientational correlations decaywork that lend some support to the KTHNY theory. How-
ever, our results differ from those of Bagchi, Andersen, and
Swope for the hexatic phase. Whereas we find no trace of it
*Electronic address: jefe@posta.unizar.es for a system of hard disks, they do, over an approximately
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FIG. 1. (@) Volume vs MC sweeps for systems of 15 876 disks  FIG. 2. (a) Chart of volume vs MC sweeps for a system of 1024
with hard crystalline walls, fop=7.90, for two different initial  disks with PBC’s not far from the critical point fgr=7.965. It is a
configurations: one obtained from previously expanding a densemall part of a run of % 16?8 MC sweeps(b) Same as in(a) for a
ordered state, and the other one obtained from previously compresgystem ofN= 900 with HCW's forp=7.77, not far from the criti-
ing a dilute disordered staté) Same as ir(a) but for p=7.875. cal point. It is a large part of a run of 1MC sweeps.

1% wide density range, for systems of particles interacting
through 1¢® potentials[26]. first emphasized by Bogolyubd28]. We can obtain reliable

Monte Carlo simulations have suffered from finite size equilibrium values for volume fluctuationg év)?) for sys-
effects and limited computer running times. These two eftems of many thousands of particles only because equilibra-
fects are not separable. As Zollweg and Chester pointed oution times are not as forbiddingly long for HCW's as they are
the equilibration timer for systems of about fadisks can be for PBC’s. This is illustrated in Fig. 2. The system of 900
much longer than FOMC sweepg27]. This is illustrated in  disks with HCW’s fluctuates well over an order of magnitude
Fig. 1 for 15876 disks. Very long simulations are neededaster than the system of 1024 disks with PBC’s. However,
becauser«L? (Wherez=2 is expectel] at the critical point since all previous MC simulations for melting in 2D that we
(and, even worses increases exponentially with within a  know of had used PBC's, the question naturally arises
first order transition region Thus, whereas Lee and Strand- whether the difference between the conclusions we draw for
burg [20] found it sufficient to do 10 MC sweeps for sys- HCW's and those of otherisl 7—22 follow from the differ-
tems of 256 particles, we did many runs of over 208 MC  ence in boundary conditions. This question is important here,
sweeps for systems of 1024 particles. since the relevant correlation length exceeds the linear size

Equilibrium results for 2D systems of hard disks, obtainedof the system in regions of interest to us. In order to be able
from MC simulations with both hard crystalline wgHlCW)  to compare readily our numerical results and conclusions
and periodic boundary conditioBBC’S), are reported here. with MC results that were obtained previously only for
Our simulations are longer than any other ones previously’BC’s, we also report results we obtained fsmalley sys-
reported by at least an order of magnitude. We have used tiems with PBC’s. We also obtain, as an unexpected bonus,
Metropolis algorithm in the constant pressure ensertthiet  results that are complementary to the ones obtained for sys-
we shall hereafter abbreviate as thepT ensemble tems with HCW’s(e.g., probability distributions for the or-
[12,18,2Q. Some results for HCW boundary conditions haveder parameter that yield interesting information that is un-
already been publishd@4]. Here we give additional results available for HCW'S.
and further details. We have not published any of our results The plan of the paper is as follows. The boundary condi-
for PBC before. Because much of the work reported here hations, the algorithm used, the issue of equilibration times,
not been done at the time of publication of Rg#4], some and further details about our computer runs are discussed in
numerical results given in this paper may differ slightly from Sec. II. In Sec. lll, results for the pressure versus volume
those therein. p(v) and volume fluctuation§ 51;)2} are given. Data points

A brief explanation for our choice of boundary conditions for ((Sv)?) obtained both directly and from derivatives
follows. The HCW boundary condition@escribed in Sec. (taken numericallyof p(v) are compared as a check on the
Il) we use here have advantages over PBC'’s. Equilibratiogoodness of the equilibrium averages obtaingddv)?) is
times are much shorter for systems with HCW’s. This isexamined as a function of system size. The evidence runs
because HCW's break the symmetry of the system. The imeounter to a first order phase transition. A volume disconti-
portance of symmetry breaking in phase transition work waswity Av for a first order phase transition, if evidence of it
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were to turn up for larger values of, would have to be less
than 1% of the volume value upon melting. In addition,
probability distributions for the volumeR(v), are obtained
from frequency of occurrence ef in MC runs. Values for
the free energy barried G, between the solid and the liquid
phases follow fromP(v). Both {(5v)?) andAG are exam-
ined as functions of system size. It is found that the trend
reported by Lee and Strandburg0] for smaller systems in
favor of a first order phase transition is reversed for larger
systems. This is further evidence against a first order phase
transition. In fact,P(v) for systems with hard crystalline
walls with up to 3844 particles doot even show a double

® (]
_ _ 3000500 ¢ 20%930
hump as a function of system voluneorresponding to ® .z)

AG=0). According to the KTHNY theory of melting in two @) ..f .‘ () (
dimensiong 4], there is a singularity in the bulk modulus, OO O?)O%%OO 9000

B, at the melting point. We obtain the melting volume value,
vn=1.259+0.006, from the locations of the maximum val-
ues of|dB/dv|. In Sec. IV, the average value, fluctuations  FIG- 3. Configuration of (2-2)? particles with hard crystalline
and fourth-order cummulants of the orientational order payvalls. The white dISk.S are fixed on triangular Izattlce S|te§. They
rameter (b, defined thereinare examined. Data fofp)  Make up thecrystalline walls. The N=(2"-2)" black disks
show that(#) drops to zero discontinuously upon melting. (nzz_l in this _|Ilustrat|or) inside the walls are the system S particles.
Plots of((6¢>)2> versus(¢), for systems of different sizes All disks, white and black, are always kept of equal size.

provide further evidence thdip) does not vanish continu-
ously asv — v, in the crystalline phase. Moreover, probabil-
ity distributions P(¢) for ¢ exhibit a sort of coexistence
between c_Jisordereql stgtes ahe= 0.74+0.02 states[ P(¢) (simulating volume variations of the systenfror v=4a,,

is approximately size independent for6AI<1024, once \yhereq is the closest packing volume, escape through gaps
again in accordance with a second order phase tran§itionyeqyeen fixed disks would be possible if there were no ad-
Yet further evidence that supports the conclusion th&t  gitional constraints, such as periodic boundary conditions
vanishes dlsconu_nuogsly upon melltlng, as predicted by NeI(PBC’s). Forv>4a, these conditions may be thought of as
son and Halperin, is provided in Sec. IV: a plot of pgeg pus a symmetry breaking array of fixed scatterers on
((3l¢])?) versus(e), for systems of different sizes. Plots of o poundaries. Here(v)<1.5a, and ((v—(v))2)Y2
fourth order cummulants ap versus{¢) are also consistent <0.014, (see below. Consequentlyy never comes close
with a discontinuity in(¢). Bounds for the extentabout a ¢, gne-half of 4 in our simulations, and HCW's behaved
1% volume changeof an intermediate phasghe hexatic  (herefore as impenetrable walls throughout. Because they
phase, if one were to exist, also foll_ows from the data shown break the symmetry of the system, HCW's ease nucleation of
in Sec. IV. Finally, some concluding remarks are made iNcrystal growth, much as is done experimentally when crys-

Sec. V. ) . tals are grown from the melbn a substrate Systems of
Throughout this paper the specific voluntectually an 1 gjsks, for instance, tumn out to equilibrate at least 10
areain 2D) v is given in units of the closest packing volume, imes faster for HCW’s than for PBC'’s.

ao, in the triangular lattice, and the pressyrds given in
units ofkT/ag throughout, wheré is Boltzmann’s constant
andT is the temperature. All errors quoted for values of the
average volume, for the order parameter and for its fluctua- We perform MC simulations for a hard disk system with a
tions, were computed as follows. After equilibration, eachconstant number of particles, pressure, and temperature; that
run was divided into five intervals; the standard deviation ofis, in the so calledNpT ensemble. In it, whether an at-
the five corresponding values of the quantity of interest isempted change of the system’s particle configuration and/or
given as its error. volume is made or not, depends on the value of
AQ/KT=NAIN(V)+(AE+pAV)/KT, where AE and AV are
the corresponding changes in energy and volume, respec-
Il. ALGORITHM AND BOUNDARY CONDITIONS tively. Detailed balance must, of course, be obeyed, so that if
some transition is allowed with probability 1 when
AQ <0, then the corresponding reverse transition must take
We use both hard crystalline wal[HCW) and periodic  place with probability exp{ AQ/KT). (See Refs[12,18,2(Q
boundary conditions. As HCW boundary conditions havefor further details. We implement it as follows: after aM
not, as far as we know, been used before, a brief explanatioparticles in the system are given a chance to move, an at-
for them follows. Consider a rectangular box of aspect ratidempt at changing the system volume is made. We do not
J3X 2 that produces no strains in a triangular crystal latticeallow particle moves beyond a distance ¢&,/8, which
Let all “sites” on the boundary be occupied by disks, as ingives an acceptance rate of about a 40%. We then attempt to
Fig. 3. They make up the “crystalline” walls. The positions increase or decrease all particle rahicluding the ones that
(but not the sizgsof the disks that make up the HCW’'s make up the wallsby the same amount with equal probabil-

remain fixed throughout the simulatioN.=(2"—2)? disks
inside the box are the system’s “particles.” AlP2disks are
of equal size, and remain so as their radii vary in unison

B. Algorithm

A. Boundary conditions
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ity. Particle radii are increased only if no overlap ensues

between any two disks. Attempts to make all disk radii 1.32
smaller(corresponding to a total volumacrementof AV)

are only realized a fraction of the times given by

exd —AQ/KT] (with AE=0, since smaller radii produce no >
disk overlapg That simulates variations of the system’s vol-

ume. Specific volume variations larger thAw =2/Np are

not allowed. Much larger variations would inconveniently
reduce the acceptance rate.

In order to save time in the search for any overlap be-
tween pairs of disks that might arise whenever a disk is
moved, we use a cell method that is described next. The
choice of cell size is guided by the following considerations. (b)
We want cells that are too small to be able to lodge two disks
in them. On the other hand, fewer neighboring cells have to =
be inspected for possible overlaps between pairs of disks for
large cell sizes. Taking into account the range of particle
densities of interest to us, we divide the system’s box into 1.05 .
4"x 4" rectangular cells(Only one out of four cells are oc- 0 o 60
cupied) A table that is updated whenever a particle moves MCS (in millions)
lets us know which particle is in any given cell at all times.

In order to save computer time, we let particle coordinates be FIG. 4. (a) Specific volume vs MC sweeps for a system of 4096
integers that can be as large &8.Xhis enables us to assign disks, with PBC's, forp=7.9175.(b) The same as ifia), but at a
cells to particles, after they move, with one single logicalSlightly higher pressurp=7.92. The fact that is larger in(b) than

1.32

programming instruction. in (a) shows that equilibrium is not achieved in these runs.
eight runs in the(10-39x10° MC sweeps range foN=
C. Running times 15 876.
As is remarked above, very long MC simulations are 2. Periodic boundary conditions

needed in order to obtain goajuilibrium results. Volume

fluctuations are specially slow. That is because the aCCeRon and reliable equilibrium averages for PBC’s from time

tance rate becomes very small Kv>KkT/pN, since, o\ qutions such as the one shown in Figa)2 Relaxation
exp(-pNAv|/KT)<1 then, and|Av|>1/pN would lead t0  «imes” for systems of 1024 particles can be as long as
some pairs of disks overlapping with a high probability for aghout 16 MC sweeps[For a comparison with time scales
Av<0. for systems of about equal size but with hard cristalline
walls, see Fig. ().]
1. Hard crystalline walls Figure 4 shows charts of volume versus “time” for a

The evolution of the volume of a system of 15 876 disksSystem of 4096 particles. The longest evolut{shiown in
is shown in Fig. 1a) for two different initial conditions: a  F19- 4] is for p=7.9175. It might be thought that the sys-
disordered configuration and an ordered one. The disorderd§M iS in equilibrium. The other evolution, the one that

configuration was obtained by previously compressing the1OWS large volume fluctuatiopshown in Fig. 4b)], is for a

system from another disordered configuration at lower denS!9htly larger pressure,p=7.92, which should yield a
maller mean value of the volume equilibrium Since it

sity. The ordered configuration was obtained by previouslyS

expanding the system from another completely ordered cordoes not, it follows that equilibration has not in fact been

figuration at a higher density. Both evolutions in Fi¢a)lare achieved. Thus for systems .Of 40.9.6 particles .With PBC,S’
for p=7.90. Similarly, in Fig. 1), for p=7.875. It takes the nearly 16 MC sweeps seem insufficient for equilibration to

system nearly TOMC sweeps to equilibrate. Data points for ensue in the critical region. For this reason, we give results

the largest systems we have examined were obtained frortr(f'r systems of 4096 particles with PBC's only away from

: . : criticality.
pairs of runs —one of them coming from a disordered state For N=1024, many of our runs went on for 4MC

and the other one originating from a crystalline configura-
tion. Averages were performed only after convergence hagveeps, at least210° MC sweeps were performed on 10

; “ o ; : in the transition region. FoM=256 and 64 runs need
been achieved. “Maps” for local bond orientaticto be ~ f4NS N . -
explained below as well as crystalline structure factor not be as long. We executed .1.0 runs in 9e-15x10
graphs, are shown in Figs. 13 and 14, respectively, for al CS sweeps range. Many ac_j(_:iltlonal .shorter runs were per-
four final states of the runs shown in Fig. 1. There is no ormed, away from the transition region, for each of these

apparent history dependence. systems.
Our runs vary in length wittN and withp. In addition to

many shorter runs, at least seven runs were performed in the

(40-100% 10° MC sweeps range fa= 900, five runs in In this section, we report results for the mean volume

the (20-50)x10° MC sweeps range foN= 3844, and (v), its fluctuations((Sv)?2), and for its probability distribu-

We estimate the time scale necessary to obtain equilibra-

Ill. VOLUME FLUCTUATIONS



754 FERNANDEZ, ALONSO, AND STANKIEWICZ 55

9 —————— T
I (@
stk N
o o
7 L -
1.5
A A 10
o D
B B
:\// 1.0 ;\//
o o
— — 5 N
0.5
OC [ PO, L 0... 1 P TR na Pl e
122 124 126 128 1.30 1.32 1.34 1.36 1.20 1.25 1.30 1.35 1.40
<V> <vV>
FIG. 5. (a) Data points forp vs volume for systems of() FIG. 6. (a) Data points forp vs v for systems of [J) 64,

900, (@) 3844, and(+) 15 876 disks, with HCW'sp is givenin () 256, and () 1024 disks, with PBCp is given in units of
units of kT/a,, and thata, is the closest packing value of the kT/a,, and thata, is the closest packing value of the specific vol-
specific volume, and is in units of a,. Error bars, which are yme. Error bars, which are horizontal, are of about the size of the
horizontal, are of about the size of the data points sholh.  data points showr(b) {(8v)2) versus(v) for the same systems as
((8v)?) vs (v) for the same systems as {g). Full lines are for  in (a). Full lines are fordu/dp, obtained from cubic spline fits to

—dvldp, obtained from cubic spline fits fo(v) curves in(@. The  p(v) curves in(a). The points shown are obtained from fluctua-
points shown are obtained from fluctuations. tions.

tion P(v). The main body of evidence that supports our con-region of a first order phase transition. More quantitatively, a
clusion that melting in two dimensions is a second ordemplot of ((5v)?) versus(v) would give a parabola for a first
transition is given in this section. order phase transition; its maximum value would be
(Av)?/4, and it would vanish ab=v, andv=v, (v, and
v, are the specific volumes of each of the two hypothetical
phases Inspection of Figs. ®) and 6b) shows that the
Data points obtained fqiw) as a function op are plotted maximum value of sv?) is cut down by factors of about 3
asp versus(v) in Figs. §a) and Ga) for HCW's and PBC'’s, and 2, respectively, whenevlr— 4N. Furthermore, even if
respectively. The continuous lines shown are cubic spline fit¢his trend were not sustained Hs-«, even a value as large
to the data. Data points fd(dv)?) are shown in Figs.®) as 5<10 >, say, for theN— o limit value of the maximum
and @b) for HCW’s and PBC's, respectivelyThe continu-  of (Sv?) [see Fig. Bo)], would still imply Av=0.014.
ous lines shown follow, using the relation Clearly, the volume discontinuity of a first order transition, if
a{v)ldp=—N((6v)?), from derivativegtaken numerically ~ one were to exist, would have to be within a range of ap-
of the cubic spline fits fop(v).] The agreement between the proximately 0.01,,. This value is several times smaller than
data pointgobtained from fluctuations throughout MC rins the values often given by MC simulations that diagnose a
and the continuous lines shown in Figgbpband Gb) is a  first order transitio{20,29, and half as large as the value
measure of the quality of our equilibrium results. We deter-given more recently in Ref22]. Our results are, however, in
mine the melting point volume value;,,=1.259-0.006, agreement with the trend suggested by Zollweg and Chester
from the Bulk modulus data shown in Fig. 7. for the tie line [21]: that Av<0.025 for a system of
We wish to establish whether there is a latent heat ifN=16 384 with PBC’s, and from exploratory runs for
order to diagnose the order of the transition. Since the energM=65 536 particles they suggested the¢ might vanish
of hard disks is zero, the latent héper particlg is given by  completely asN— ce.
pAv. Av can be determined from data f¢év)?); for mac- Results for the bulk moduluB (given by —vdp/dv) are
roscopic systemg(6v)?) is nonvanishing in the coexistence shown in Figs. 7) and 7b) for systems with HCW’s and

A. Volume fluctuations
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10 O "o * 256 That behavior, in the vicinity of the melting point, is not
90@@;& 7 surprising, since—=d(A+w)/dv— atv=v,, is predicted
ottt bt L by the KTHNY theory[4]. A slight complication arises be-
1.22 124 126 128 130 1.32 1.34 136

cause|dB/dv| itself remains finite in the KTHNY theory.
This is becauseB has anessentialsingularity, given by

__ 3%Flov? (as follows from the definition oB), and the sin-
FIG. 7. (a) Bulk modulus vs volume for systems of various sizes gular part of the free energy,F, is 572’ and

(for the number of particles showmith HCW boundary condi- §~exr[—b/(v—vm)1’2] in the KTHNY  theory. Let the point
e oo o K1 11 g ve 61 where the masimurm value dHBId| is locaed bev,
Y P g.&- does not follow rigorously that,<v/,, but it seems quite

at the melting point valuey,,=1.261. The dotted line is an upper . . . o
bound that follows from the prediction of Nelson and Halperin in- unlikely that it be otherwise. We find, = 1.261+0.004 and

volving the bulk and shear moduli at the melting point. See text forVm= 1.257+0.005 for HCW's and PBC's, respectively. Evi-
details.(b) Same as fofa) but for systems with PBC’s. The data dence for setting ,=vy, is given in Sec. IV.

points shown here obtained from fluctuations, using

Hv)lap=—N{(5v)?). B. Volume distributions

We obtain the frequency of occurrenéév), for 0.001
PBC's, respectively. The data points in Figajffollow from  wide Av slots, from counting the number of times that the
taking finite derivatives of the data shown in Figap This  specific volume is found between valugsandv +Av in a
procedure gives data points with less scatter than would bgiven MC run. Obviously, the probability density that a sys-
obtained using values of(dv)?) through the relation tem’s specific volume takes the valuefulfils P(v)of(v).
v/B=N((6v)?). This relation and data fdi( sv)?) are used f(v) is shown in Fig. 8 for systems of 256 and 1024 particles
for plotting the points shown in Fig.(B) for systems with with PBC’s. Note how volume fluctuations decreaseNas
PBC’s[for which our statistical errors are much smaller thanincreases. This is in keeping with results of the previous
for systems with HCW's, as Figs.(# and Gb) illustratgl. ~ subsection. Figures(8, 9(b), 9(c), and 9d) illustrate how
ThatB does not decrease ad\lin any given volume range, f(v) varies with pressure in the range 7s8p<7.90, for
as it would for a first order transition, is not as easily appre!N=1024. The data points have not been smoothed. They
ciated in Fig. 7 as it is in Figs.(B) and Gb). were obtained from MC runs of overx21(® MC sweeps.

We can use the relation A# 1/(\+u)=v/4w (ex- Much shorter runs give poor statistics.
pressed in our own units for pressure and volume, where More information about the nature of the melting transi-
and\ are the Lameconstants of elasticity theoryderived tion follows from the knowledge of the free energy barrier
for the melting point by Nelson and Halpefi4,5], to obtain ~ AG that separates the high and low volume phas€smust
a lower bound foB at the melting pointB=\ -+, which  increase as the system’s surface for a first order transition
follows from a continuum elastic description of solids, is not[23]. In order to obtain accurate values fAiG, we first
expected to hold up to the melting point for systems of disksdefine anassymmetryariableq. Let f, and f, be the two
Not having computed the value pf, we obtain a bound for maximum values off(v), andf, be its minimum value in
B replacingu and\ + u by the larger values +u andB,  between the two maxima. We define
respectively(see footnote 37 in Ref5]). The bound that
follows, B=87/v, is shown as dotted lines in Figsiay and — fomta
: (1)

7(b). 2f,

<v>
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FIG. 11. Data points fot. "*AG/kT vs 1L. ¢ stand for data
from Lee and Strandburd® are for our own data.

FIG. 9. (a) Frequency of occurrence for the specific volume
for a system(with PBC'9 of N=1024 for p=7.85. These data ye ohtain with fourth order polynomial fits to the datdhis
points follow from runs of over2<_103 MC sweeps(b) Same as in procedure yields fairly accurate values thG/KkT (and its
(a)‘.bUt forp="7.86.(c) Same as ina), but for p=7.865.(d) Same errors can be easily assesgebhe values thus obtained for
as in(a), but for p=Z'87' The data have not been smoothed. Al L *AG/KT, as well as those obtained by Lee and Strandburg
bi forAv=10"3, ' : i

ns are fordv [20] for smaller systems, are displayed in Fig. 11 versus
Whether | K defi di h 1/L. Clearly, the trend established for smaller systems by the
ether it makes more sense to de according to the  yata of Lee and Strandburg, that favors a first order transi-
areas under the two humps 6fv) makes little difference tion, is reversed for larger systems
here, because of the observed shapd (of. We define a = \ye conclude this section with the following observation,
frele ener(ﬁy barrieAG(q) between the “low” and “high” A/ can become independent bfonly if the correlation
volume phases, length is smaller than the linear size of the system. Boundary
conditions would not matter much then, and double humped
2fq graphs forf(v) would therefore ensue for HCW also. Plots
forf, 2 of f(v) that contradict this assumption are shown in Fig. 12.
Thus, it seems that, in thed—c< limit, there is no volume

We let AG/KT be theq—0 limit of AG(q)/kT (which

e~ AG(A)/KT—

Data points forAG(q)/kT are shown versul| in Fig. 10
for several system sizesNE 256,576, and 1024 Data —T T
points obtained foN=64 and 400, from runs of over 0 8 p=7.740

MC sweeps are not shown in this figure. w A p=7.755
7 )

L . o p=7.785
® o "
2.0 T T v o L] ° p=745
ST
° > *
= .
.
15 r 1 .
'
'_‘—t L4 ® L ]
(\5 L4 o.
< .
°
10 f o g - %
o A. . Cil 44 7.
) Ag% [ ] Z& st 1.24 1.26 1.28 1.30 1.32 1.34
0.5 . ! . v
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q

FIG. 12. Frequency of volume occurrences for systems with
HCW boundary conditions® are for 900 particles. All other data

FIG. 10. Data points foAG/kT are plotted vsq, defined by  points are for systems of 3844 particles, for the three pressure val-
q=|P,— P,|/2P,, whereP, and P, are the two maximum values ues shown. The data points for 900 particles are taken from a run of
of P(v), and P, is its minimum value.A, (I, and ® stand for 10 MC sweeps. Other data points are taken from runé36t-37
N=256, 576, and 1024, respectively. Equati@his used to obtain x 10" MC sweeps. Note that, fdd=3844,f(v) “moves,” as the
the values ofAG/kT shown. These points are obtained from datapressure varies, in a fashion that is contrary to the existence of a
such as are shown in the previous figure for systems with PBC’s.double humped (v).



55 MELTING OF SYSTEMS OF HARD DISKS BY MONTE ... 757

(a)

(@

FIG. 13. Pictures show angtle as a function of position for each Voronoi cell, for systems with HCW’s. White stands=@°, and so
on, up to black fore=+30°. Picture(a) [(d)] is for the final state of the two runs shown in Figa)lthat started from an orderddisordered
state. Picturdb) [(e)] is for the final state of the runs shown in Figb)lthat started from an orderddisorderedl state. The instantaneous
volumes for(a), (d), (b), and(e) are 1.266, 1.265, 1.285, and 1.290, respectively. Two final states<far32 and 1.35 are shown {o) and
(f), respectively.

discontinuity, and the free energy barrier between the two " 1 6 g™
hypothetical phases becomes size independent. aqe'tmn=—> €%, (©)
n m
IV. ORIENTATIONAL ORDER where the sum is over alf, nearest neighbors of theth

particle, anda, is a real number that satisfies<@,<1.

We now turn our attention to the behavior of the orienta-an: 1 for a perfectly crystalline configuration.
tional order parameter, more specifically of its average value, Spatial variations ofr may be displayed in sort of maps,
its fluctuations, and its probability distribution. We examinetnat we shall call bond orientatidBO) maps for short. Such
the evidence for the conclusion that the orientational ordemaps are exhibited in Fig. 13 for the final configurations
parameter vanishes discontinuously upon melting, and fin@ptained from each of the four computer runs exhibited in
that either there is no hexatic phase in 2D systems of harﬁigs' 1a and 1b), and for v=1.32 and 1.35 for
disks, or elsdif it exists) that the volume varies by less than 15 876-particle systems. White stands fer=0°, and in-
about 1% in it. creasingly darker grey scales are for other values,afp to
+30°. The HCW boundary conditions foree=0 near the
walls. The two BO maps on the left hand side of the figure
are for the two final configurations of Fig(da), for which

We define the orientational order parameter followingp=7.90. The two BO maps on middle are for the final con-
Nelson and Halperifd]. Nearest neighborare defined first. figurations of Fig. 1b), for which p=7.875. The top and
Whether two particles are nearest neighbors may be deciddsbttom BO maps on the column at the right are for configu-
by a rigorous schemg30] that is a generalization of Wig- rations withv =1.32 and 1.35, respectively.
ner’s cells for lattices, or through sorad hocdefinition that For comparison, we show graphs of the structure factor in
makes use of particle distances only. We have used theigs. 14a) and 14b)-14(f) for the final configurations
former definition for the sort of crystalline maps that arewhose BO maps are shown in Figs.(&3and 13b)—13(f).
shown in Figs. 18) and 1%a) (explained below but have Note the slight anisotropy shown by the graphs for
used the latter definitiotfor speed of executigrin our MC ~ p=1.29. This is to be expected, since the correlation length
computer program(In our computer program, two particles (see belowis nearly as long as the linear size of the system
qualify as nearest neighbors if the square of the distancér v =1.29.
between them is less than 1.3 times the specific volume. No marked dependence on initial conditions is shown.

We define the orientational order parameter in two stepsClearly, melting(loss of weak crystalline ordeand loss of
Let 6" be the angle between the “bond” linking nearest orientational order take place asincreases.
neighbor particles andm and some arbitrary reference line.  BO maps and crystalline structure graphs for systems with
An angle «,, (that shows how bonds out of particleare = PBC’s show similar behavior. Graphs and BO maps for
oriented is defined through the relation N=1024 and 4096 are displayed on the top and bottom row

A. Orientational order parameter
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FIG. 14. Graphs show the structure fac&k) as a function ok=Kk,k, for systems with HCW'’s. Graph@) and (b)—(f) are for the
final configurations whose crystalline maps are shown in the previous figure.

of Fig. 15, respectively. Spatial variations @fare shown on Fig. 15c). Thus, whereas weak long-range orientational or-

columns 1 and 3. Each graph on columns 2 and 4 shows thaer might have been erroneously suspected from the BO map

structure factor for the configuration whose BO map is disfor the N=1024 system, th&l=4096 system clearly exhib-

played on its left hand side. The léfight) half of the figure its many orientation domains. In fact, as will be seen below,

is for ordereddisorderefl states with the same value of vol- v=1.31 is located deeply in the isotropic phase.

umev=1.26 p =1.31). In order to be able to proceed with more quantitative con-
Note that orientational order is correlated on Fig(cl5 siderations, we now conclude the definition of the orienta-

over a distance that is comparable to the linear size of th&onal order parameter. Let

N=1024 system. The maps of Fig. (b are for a _

N=4096 system at a value of(1.31) that is the same as for dn=a,e'n, 4

(e)

FIG. 15. Spatial variations of angte[defined in Eq(3)] are shown on columns 1 and 3, for systems with PBC'’s. Black stands=or,
and so on, up to white far= = 30°. Structure factor§(k) are shown as functions &f (on the horizontal axisandk, (on the vertical axis
on columns 2 and 4. The pair of pictur@s and(b) [(e) and(f)] are for a configuration ol =1024 (N=4096) and volume =1.262. The

pair (c) and(d) [(g) and(h)] is for N=1024 (N=4096) and volume = 1.318. Graphs and BO maps fii=1024 and 4096 are displayed
on the top and bottom rows, respectively.
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FIG. 16. (a) Quantity(¢) vs(v) for the shown values dfl hard <v=>
disks in a box with HCW’s(b) {|8¢|?) vs (v) for various values . .
[same as in Fig.(®] of N hard disksd¢=p—( p). L7(| 5| vs FIG. 17. (@ _Quantlty(qﬁ) vs(v) f20r systems with PBC and the
b-ln(&/L) is shown in the inset 7g=0.3, b=0.77, Number of particles showrib) (|6¢|) vs(v) for the values oN
£e=expb/u?), u=v —v;, andv,=1.260. shown in(a); (| 5¢|?) vs In(&/L) for the values oN shown in(a),

b=0.9, £&s=expO/ut?), u=v—v;, andv;=1.265.5¢=p— ().
and
in Sec. lll thatv,,<1.261+0.004 for HCW's, and that
~ vm<<1.257+0.005 for PBC's, we conclude tha#) vanishes
d=N"1 &, (5  discontinuously ab =v,,, as predicted by Nelson and Hal-
" perin [4]. More specifically,(¢) vanishes from the values
. ~ . . . 0.74 (at v,=1.261) and 0.75at v,,=1.257), just below
oo e S o e Teling, 161 HOWTS and PECS, tSspecivel. ndependen
For HCW boundary conditions, we only sl?Jm over particlesewdence of this conclusion is to be found below in Sec.
- ) ' T X IVC. We take the mean of these two values
within a small inner box(that holds N particles, and (v,,=1.259+0.006) to be the melting volume value.
(N)=N/16) within the hard wall box. For PBC'’s the sum in
the above equation is performed over all particlegives a
measure of order for systems that crystallize on triangular
lattices.(¢)=1 for a perfectly crystalline triangular lattice, Definitions of the orientation correlation lengéy and of
and(¢)=0 for a system in which the orientational symme- the exponentys follow from the general expression
try is not broken. We do not take the absolute valuebdh e
the calculation of ¢) for systems with HCW's. There is no (dnepr)~e "nié/rf, (6)
need for it then because the HCW boundary conditions break
the rotational symmetry of the system. For PBC's, averagevherer,, is the distance between particlesand!, and ¢, is
values of ¢ stand for{|¢|). The reason for the absolute defined in Eq.(4).

B. ¢ fluctuations

value is, of course, thdt$) would otherwise vanish for all We now examine the behavior of|8¢|?), where
densities of any finite system with PBC’s, since no spontadé=¢—{¢). Consider a plot of|54|?) versus(¢) for
neous symmetry breaking can occur then. various system sizes. Sindgs¢|?)~1/N for NV &, it

Data points for ¢) versus volumév) are shown in Figs. follows that {|5¢|%)~1/N for all nonzero values of ¢),
16(a) and 17a) for systems of various sizes with HCW’s and except for the critical region nedrp)~0 whose size van-
PBC's, respectively. We next argue thgt) vanishes dis- ishes asN—c, if (¢) vanishescontinuouslyat the critical
continuously upon melting. The data fo$) show no size point. Such a behavior is illustrated in Fig. 18 for the Ising
dependence fofv)<1.263 for HCW's, nor fov)<1.259  model in 2D, where fluctuations in magnetization are plotted
for PBC'’s. Furthermord ¢)=0.75 therein. Since we found versus the magnetization for systems of various sizes. That is
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FIG. 18. Plots of magnetization fluctuatioggésm)?) vs the é S o,
magnetization m for two-dimensional Ising systems of - 2tk [} O: R
L=8, 16, 32, and 64. AN increases, the range of values rof ! ? 00.
where((6m)?2) does not decrease as\lbecomes smaller, in ac- 1k oy o 4
cordance withm vanishing continuously at the critical point. A &@ O
e
to be contrasted with the behavior exhibited in Figa@nd 0.00 0.25 0.50 0.75 1.00
19(b), for systems with HCW's and PBC'’s, respectively. The <lol>

observed behavior is compatible with criticality over the en-
tire interval 0<(#)=0.7, that is, with a discontinuous drop
from ($)=~0.7 in the crystalline phase just belaw=v , to
(¢)=0 just abovev=uv,,. This is in agreement with the

conclusion drawn in Sec. IV Az' _ ticles in the whole systemn(b) Same as irfa), but for systems with
We next examine how| 5¢| ) behaves as a function of pgc's. The observed behavior is compatible with a critical behav-
volume in order to determine the extent of the isotropiCior over the interval 8(¢)=<0.7; that is, with a discontinuity in

phase(|5¢4|?) is expected to rise a®) decreases, until the (o) at the melting point.
rise is arrested when the correlation lengthbecomes as

large as the linear size of the system. Figures & and  ona, lies unresolved within our statistical errors. More infor-
17(b) show(|§¢|*) versus(v) for systems of various sizes, mation about the hexatic phase is given in Sec. IV D.
with HCW’s and PBC’s, respectively. Plots &fs(| 5¢|?)

versusb~lIn(&/L) data points collapse nicely into a seem- o
ingly universal curve, as shown in the inset of Fig(l6 C. ¢ distributions
after using £s=expb/u?®), where u=|v—uv;|, with This section is devoted to systems with PBC’s. The cor-
v;=1.260,b=0.77, andzn=0.3, for systems with HCW’s. responding results for systems with HCW's are uninterest-
This is in accordance with an isotropic phase that extendig. (¢ distributions for systems with HCW’s behave much
down tov=v;, where & (whose behavior we have pre- as volume distributions do: there are no double humps for
scribed using the KTHNY theojydiverges. Scattering of any value of the pressuje.et P(|¢|) be the(unrenormal-
data points becomes significant for —1.260>0.005. That, ized) probability density that the absolute value of the order
plus the corresponding variations df and 7, gives parameter have a value withiih| and|¢|+d|¢|. Whene is
v;=1.260+0.005,b=0.8+0.1, andz=0.30+0.05. distributed isotropically, theP(|¢|)/|¢| is proportional to
The same procedure applied to tjé#|?) data for sys- the joint probability density for the real and imaginary parts
tems with PBC's, yields the results shown in the inset of Fig.of ¢. For finite systemsP(|¢|)/| #| is centered onp=0 in
17(b) using é&=expb/u*?), and v;=1.265+0.005, and the isotropic phase, well above the critical point, but it is
b=0.9+0.1. Note that whereak ”s(|5¢|?) is scaled for centered on a nonzero value in the crystalline phase for
HCW, the factorL 76 is omitted for PBC’s. This is because v<uv,. It turns out that, for PBC'sP(|¢|)/| ¢| is “doubled
the best value ofpg found for PBC'’s ispg=0. The values humped” near the melting point. Such plots are shown in in
found forv; for PBC’s and HCW's agree within statistical Figs. 2@a)—20(d) for a system of 1024 particles under pres-
errors. So do the values found for However, the values suresp=7.85, 7.86, 7.865, and 7.87, respectively. Clearly,
found for 74 clearly disagree. This is discussed in Sec. V. ¢ distributions are affected by pressure variations much as
Putting together results for HCW’s and PBC’s we arrive volume distributions are affecte@ee Fig. 9. Indeed, fluc-
atv;=1.262+0.007. Sincey ,,= 1.259*+ 0.006, we must con- tuations in¢ andv are correlated. This is discussed in Sec.
clude thatv;,—v,, the extent of hexatic phag# there is V.

FIG. 19. (a) Data points for(|5¢>|j) vs (¢) for systems of
various sizes, with HCW’'qRecall thatN is the number of particles
in a subsystem that only holds 1/16 of the total numiKenf par-
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FIG. 20. QuantityP(|¢|)/|¢| for systems of 1024 disks with PRC © e
PBC's. Figures(a), (b), (c), and (d) are for pressure values B 05 o) LS
p=7.85, 7.86, 7.865, and 7.87, respectively. Data points(dpr ©
(b), (c), and(d) are obtained from the same runs as data on Figs. [l O 1024 ©
5(a), 5(b), 5(c), and d). Each bin is forA|¢|=1073. 04| o 256 o(5
o 64
P(|#|)/|¢| versus ¢ is shown in Fig. 21 for o3 1 oy
N=1024, 576, and 256 fqp=7.87, 7.83, and 7.66, respec- 124 125 126 127 128 129 130
tively. The three distributions shown are remarkably alike. <>

(A distribution of ¢ for N= 64, that is not shown for the sake

of clarity, differs negligibly from the rest.Coexistence of FIG. 22. (a) Data points for the fourth order cumulantlike quan-
two phases, one for¢=0 gnd the other one for tity u=1—(||*/(3(|¢|2)?), vs volume, for systems with HCW's
¢=0.74+0.02, for macroscopic systems miglerrone-  for the sizes shown. The arrow shows where curve fits to the data
ously) be inferred from inspection of Fig. 21. Coexistence of hoints for different system sizes meé) Same as ir(@), but for

two phases in a first order phase transition would imply aystems with PBC’s for the sizes shown.

free energy barrier, between thi¢)=0 phase and the crys-

talline phase, that would increase as the surface of the sys-

tem. However, no system size dependence is observed in o . -
Fig. 21. This fact is more obvious here than for volume =0.740.02, and no significant size dependence for It is

fluctuations. The qualitative conclusion for the free energyobserved. This contrasting behavior, between fluctuations in

barrier, however, is the same: it is size independent. vanding, is disc_ussed in Sec. V.
On the other hand, whereas the trend exhibited in Sec. IlI The peak location oP(|¢|)/|¢| at ¢=0.74=0.02 pro-

is consistent withvolume fluctuations vanishing(for all  Vides an independent determination of the valug&f just
pressures in the N—oo limit, P(|4|)/|¢| peaks at below melting. In addition, it follows from the data shown in

Fig. 17a) that the value(¢)=0.74+0.02 corresponds to
v=1.258+0.004. This provides a check on the valuevgf

0.10 . . ' ' established above by another method.
0.08
_\3_ 0.06 D. Cumulants
% 0.04 . Fourth order cumulants have sometimes been used to lo-

cate critical points, and to diagnose whether a transition is of
first or second ord€fi31]. We report the results we obtained
next. They are consistent with the conclusions arrived at thus
far, but they lead us to nothing new.

Consider the fourth order cumulantA,={|®|*
—3(]¢|?)2. In order to make comparison with other pub-
lished work easier, we work with quantity, given by
u=—A4/(3{|#|?)?), which we will refer to aghe cumulant
Clearly, u=% for macroscopic systems in the crystalline
phase, sincd ¢)#0 therein, and fluctuation contributions

0.02

0.00

FIG. 21. QuantityP(|¢|)/| #| is shown v ¢| for systemgwith
PBC'sy of N=256 for p=7.66, N=576 for p=7.83, and
N=1024 forp=7.87.
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V. CONCLUSIONS AND REMARKS

O fF~T—TTT T T T 7T T 17 )
@ . 50?30 | | | A. Conclus'lons | )
06k HCW *0 | We first summarize our main conclusions. Specific vol-
) © ume fluctuations decrease as system size increases, in accor-
dance with a second order phase transifisee Figs. &)
= 05F :O 4 and Gb)]. Further support for the melting transition in 2D
o+’ + 15876 | being of second order follows from the observatisee
+ 3 o 3844 Figs. 11 and 1pthat the free energy barriexG(v) for a
04 F, Q+Q P o 900 . fluctuation of volumev seems to become independent of
50 system size foN=400 at criticality. Thus the trend estab-
T lished previously{20] for AG(v) for N<400, thatAG(v)
v L L, grows as the system’s surface area, is reversed for larger
G @%@ 1 values ofN. For hard crystalline wallsAG(v)=0, at least
0.6+ PBC qﬁqj . for N=<3844 —see Fig. 12. FurthermoG(¢) exhibits no
0¥ size dependence throughout the full range of system sizes we
] studied with PBC'S(see Fig. 21
= 05F od . Our second conclusion is thé#) drops discontinuously
o.% 64 1] (from { $)=0.74+0.02) to zero at the melting point, as pre-
04l o * 256 | | dicted by Nelson and Halperin. We draw this conclusion
' Oe o 1024 from three observation$1) the size independence shown by
© ' (¢) for v<v,,, the fact that(¢) is far from vanishing
13 ) 3 AU TP SO YR RPN RPN EPU S therein, and the assumption that)=0 for v>v,; (2) the
0.0 0.2 0.4 0.6 0.8 behavior of P(|¢|)/|¢| at criticality (see Fig. 21 (3) the
<¢> weak size dependence exhibited by|5¢|%) for

0<(¢$)=<0.7 [see Figs. 18, 19), and 19b)]; and (4) the
FIG. 23. Data points for the fourth order cumulantlike quantity fourth order cumulant of as a function of ¢) differs from
u=1—(|¢|"/(3(|4|??), vs(|#]), for the system sizes showth)  the value(Z) it must have in the crystalline phase, and seems
Same as ir@), but for systems with PBC’s for the sizes shown. g pe size independent, for<Q(¢)=<0.7.
We find no hexatic phase. If it exists for systems of hard
disks, then its extent is quite small and lies unresolved under
vanish for macroscopic systems. On the other hamd; for  our statistical errors.f — v ,=0.003 is small with respect to
macroscopic systems in the isotropic phase, since the centrdle errors inv; andv,,, which are 0.007 and 0.006, respec-
limit theorem then gives @int normal probability density tively.)
for the real and imaginary parts df. It is straightforward to
show thatu increases with system sizap to 3) in the crys-
talline phaseu decreases with system si@own to3) in the B. Remarks
isotropic phase. It has been argL(gde Ref[zz] and n_afer— Some caveats for the conclusions we have drawn from
ences thereinthat u would be size independent in the o, nymericalresults follow. We cannot rule out a first order
hexatic phase. Plots ofversus specific volume are shown in phase transition coexistence region, or a hexatic phase, in
Figs. 22a) and 22b) for systems of 900 and 3844 particles \yhich the volume can vary by less than 1%. We cannot rule
(with HCW's), and for systems of 1024, 256 and 64 par-out either that ¢) vanishes continuously at the critical point
ticles (with PBC'S). Let v, be the volume value such that as, for instance<¢>~(vm—v)ﬁ’ for v<v,,, though consis-
cumulant curves are clearly size dependenuvfor ., where  tency with our data would require th&<0.1. We estimate
u decreases aN increasesv.=v; is expected. Polynomial the latter bound as follows. Consider the plots shown in Figs.
(of second, third, and fourth ordefits to the data give 18, 19a), and 19b). All data points for the Ising model with
v:.=1.263+0.005 for HCW's, andv=1.267-0.005 for N=64, 256, and 1024 spins collapse into one seemingly
PBC’s. This is in agreement, within statistical errors, of theuniversal curve if we plot ((sm)?)L¥**"€ versus
value (;=1.262+0.007) we have obtained far, . (myLY8* €2 that is, if we shift the exponent values for the
It is instructive to plotu versus(¢) for various system susceptibility and fom away from their correct value by
sizes, as shown in Figs. @8 and 23b). The trend shown and by e/2, respectively, where=0.14. (Data points for
contradicts the hypothesis that) vanishescontinuously N=4096 do not scale as well with the rest of the data, for
upon melting, because if that were so, theh)#0 would  these wrong exponent valugSimilarly, all our data points,
imply a crystalline state, from which it would follow that  for N=64,256, and 1024 collapse surprisingly well into one
would increase withN (up to the valué in theN—o limit) ~ curve when we plot(|8#|?)L¢ and (¢)L? where
for any nonzero value df¢). Sinceu seems rather indepen- e=0.15. Unfortunately, we have no data availade we do
dent of N, and u is significantly smaller than? for  for the Ising model that would allow us to check whether
(#)=0.7, a discontinuous drop ifvp) upon melting follows indeed scaling does become worse, with these exponents, for
once more. larger systems.
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Our results for ng are inconclusive. For HCW's,
76=0.3 forv>v; follows from scalingL 7s{| 5¢|?) data for 1.36
v>v; versuség/L. However, we obtaingg=0 for PBC’s. 133 | (a)
These two results are clearly contradictory. There are several T
ways out of this. One is that the hexatic phase does exist, but o 130 fif Ik . AL
we cannot resolve it with systems of somé particles, and ~ ‘ w ‘

that we are picking up effects from the two critical points 1.27 1 {% Uifldnd 3 !
that would exist then. Such effects can be boundary depen- - lii '
dent[influence from the melting critical point would account 1.24

for the double peake®(|¢|)/|#| curves that are shown in . . .

Fig. 21 for PBC’s for volumes significantly larger than, 100 b (b) _
which in turn imply the resultpg=0 for PBC’g for small

systems. The other possibility is that the hexatic phase does _ 0-75

not exist for systems of hard disks, and that the nonzero = 0.50 1L i (¥ ‘ ! "l
value that we found fotyg in the isotropic phase of systems Lt A | | Wi |

with HCW’s does not hold right down to the critical point. 025 M¥ || | N | R L .
That would not be too surprising. We did not try to fit our 0.00 LU0 1 d LUl

data with a volume dependent, (that might vanish rapidly 100 125 150
asv—uvm,, much as it does for the superfluidity transition in MCS (in millions)

two dimensions, wherep=0 for T=T,, and n#0 for

T<T,, but »—0 asT—T, from below[32], whereT and FIG. 24. (a) Time evolution of the volume of a system(with

To are the temperature and critical temperature, respe@BC’s) of 1024 disks forP=7.86.(b) Time evolution of| ¢|, from
tively). Some interpolation betweens=0 at v=v, and the same portion of the run that data pointah are taken from.
1n6=0.3 at, sayp =1.260+ 0.005 would have little effect on The “time” is in MC sweeps(given in millions.

our scaling plots. In any event, we cannot resolve this issue

here.

Knowledge ofS(k) might be useful for diagnosing the sition in 2D, is reversed for the larger systems we have stud-
existence of the hexatic phase. We do not report data foed. In addition, no free energy barriéior the nucleation of
S(k), except the graphgfor instantaneousconfigurations  another hypothetical phasshows up in the data for systems
shown in Fig. 14 for HCW's, and the graphs shown in Fig.with HCW boundary conditions. On the other hand, Weber
15 for PBC’s. Our data fo8(k) do not add anything new to and co-workerg22] concluded that melting is a first order
our conclusions about the hexatic phase. Bagchi, Andersephase transition in 2D, mainly from MC simulatiorief
Swope[25] recently obtained some data 6¢k) that sup- about 2<10° MC sweep} of systems of 16 384 hard disks.
port the existence of the hexatic phase, from MC simulationd hey draw their conclusions from data that differ from ours.
of large systems of particles that interact throught2pair ~ Their cumulant curves for subsystems of up to 256 particles
potentials. The extent of the hexatic phase they found is quiteross at =1.2851=0.0007. But this point lies in the isotro-
small: in it, the density can only vary by about 1%. As statedpic phase(according to other analysis of their datd his
above, the accuracy of our results does not allow us to recontradiction is avoided if a first order phase transition en-
solve something as small as that. There may be a fundamegues at some volume larger thas 1.2851, thus preempting
tal reason for this, as follows from the following simple ar- the approach to the critical point further on. This led Weber
gument. A reasonably well defined number of dislocationsand co-workerg22] to diagnose a first order transition. Our
must be present in the hexatic phase lest its own character lggvn cumulant curves for different system sizes spread out
blurred. But consider the effect of adding just one single(see Fig. 22for v>1.263+0.005 and >1.267+0.005, for
dislocation to a system of, say, 4Bard disks. It would lead HCW’s and PBC's, respectively. Our cumulant results,
to distances between rows (100 of thedecreasing by 1%, clearly different from those of Ref22], fit well with all of
which is at least twice as large as the effect produced byur conclusions(The small size of the systems whose cum-
sweeping through the entire hexatic phase. It would followmulant values were reported in RE22] may account for the
then thatN=(2v/Av)? would have to be fulfilled 4v is  difference between the results quoted therein and our)own.
how much the volume can vary in the hexatic phaserder Finally, we discuss the relation between the discontinuity
for the hexatic phase to be clearly discernible. The systemi# ¢ atv=uv,, and the lack of a corresponding discontinuity
we have studied her@f N=<15 876) do not quite fulfil this for v. Fluctuations in both of them are large at criticality, but
criterion. On the other hand, Bagchi, Andersen, and Swopé(év)2> vanishes aN—o» [see Figs. &), 6(b), and §,
simulated systems of up to 65 536 particl@sth softer pair ~ which implies that there is no volume discontinuity. On the
potential interactions That may explain why they can dis- other hand,(|8¢|?) does not vanish adl— [see Figs.
cern a small hexatic phase that we cannot. 17(b) and 21, in accordance with a discontinuity ifx).

We next relate our results to recent work that support arhis different behavior might seem somewhat puzzling,
first order phase transition. We have already mentioned isincev and ¢ fluctuations are strongly correlated. Figure 24
this section how our results fit with the ones obtained by Ledllustrates the point; time evolutions ¢#| and ofv, taken
and Strandburg for small systems from long MC r{ig6]:  from the same portion of a computer run, are shown for a
the trend shown by their data, as system sizes increase, thatstem withN=1024. Clearly, the system is coherently ori-
led them to conclude that melting is a first order phase tranented at times when the volume is small, and becomes dis-
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ordered when the volume is larger. In order to understan@n a number of work stations that fluctuated, in about two
how finite fluctuations ing may survive theN—o limit ~ years time, between about 5 and 15.

while finite fluctuations inv do not, consider a system with
two domainlike regions, each with a given bond orientation.
The volume is larger then only because there is a “domain We are indebted to Dr. Juan Rivero for greatly easing our
wall.” (We use the wordlomainloosely here. Similar con- interaction with computers. We are grateful to Dr. Juan Mur-

. . D . _gich and to Dr. Felix Carrique for generous help with com-
siderations would apply for disclinationsVolume incre puter work. We thank Professor E. Bie, Professor M.

ments accompanying orientational disorder are dorBBm  \je7arq, Professor H. Herrmann, and Professor D. Nelson for
face effects. Not surprisingly, volume increments can bene|pful comments. One of US.F.F) is grateful for financial
vanishingly small for fluctuations that takg from a large  support from Junta de Andalucia, and another one of us
value(e.g., 0.74) to a null value at criticality, in macroscopic (J.J.A) is grateful for a study grant from DireceicGeneral
systems. The results reported here were obtained from rurde Ciencia y Tecnologt
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