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Melting of systems of hard disks by Monte Carlo simulations
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Monte Carlo~MC! results are reported for the melting of two-dimensional systems ofN hard disks in the
NpT ensemble both for hard crystalline walls~for N5900, 3844, and 15 876!, and for periodic boundary
conditions~for N564, 256, 400, 576, 1024, and 4096!. Long Monte Carlo runs~e.g., up to 353106 MC
sweeps forN515 876, and 23108 MC sweeps forN51024! give equilibrium results. We obtain mean values
and fluctuations of the volume, of the orientational order parameterf, and of the crystalline structure factor.
Our main conclusions follow:~1! the melting transition is of second order;~2! ^f& drops discontinuously~from
^f&50.7460.02) to zero at the melting point; and~3! we find no hexatic phase~if it exists for systems of hard
disks, then the range for it is within about 1% of the melting volume value!. @S1063-651X~97!10201-X#

PACS number~s!: 64.70.Dv, 61.20.Ja, 05.70.Fh
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I. INTRODUCTION

Despite the enormous effort spent studying tw
dimensional melting over a time span of several decades
nature of this phase transition remains a matter of con
versy. It differs qualitatively from melting inthree dimen-
sions. As was first shown by Peierls@1# and by Landau@2#,
long wavelength phonons destroy long-range crystalline
der in two dimensions~that is, the density cannot be a pe
odic function of position over all space!. A rigorous proof of
it was provided by Mermin, who also pointed out that orie
tational long-range order can nevertheless exist in two
mensions~2D! @3#. The theory of Nelson and Halperin~NH!
was an important step toward understanding melting in
@4,5#. In this theory, free dislocations destroy weak cryst
line order above the melting point, much as free vortic
destroy weak magnetic long-range order in the paramagn
phase of theXYmodel in 2D, in the theory of Kosterlitz an
Thouless@6#. However, since dislocations do not, by them
selves, obliterate orientational order, the existence of a n
crystalline, nonisotropic phase~referred to by NH as the
hexatic phase! is, therefore, possible in this theory. Oth
topological defects~referred to asdisclinations by NH!
would destroy orientational order completely when the s
tem is expanded beyond a second critical point into theiso-
tropic phase.

Let vm andv i be the specific volumes for the crystallin
hexatic and for the hexatic-isotropic transitions, respectiv
The main predictions of NH are~1! density correlations de
cay algebraically with distance in the crystalline phase, w
a critical index h that increases withv up to h, 1

3 at
v5vm ; ~2! asv increases, the orientational order parame
drops discontinuously~by an undetermined amount! to a null
value atv5vm ; ~3! in the hexatic phase, density correlatio
decay exponentially, while orientational correlations dec

*Electronic address: jefe@posta.unizar.es
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algebraically with distance~with a critical indexh6 that var-
ies betweenh650 at v5vm andh65

1
4 at v5v i); and ~4!

the critical behavior of the orientational correlation length
the isotropic phase is given byj6;exp(b/Av2v i). The ex-
tent of the hexatic phase was not determined by N
(v i2vm may in fact vanish altogether!.

Other melting mechanisms, such as grain boundary
mation @7# have also been proposed. Many experimental
sults @8–10# seem to support the two-stage melting sche
that has come to be known as the theory of Kosterlitz, Th
less, Halperin, Nelson, and Young~KTHNY ! @4–6#. Many
computer simulations had already been performed before
KTHNY theory came about@11,12#. Computer runs were
necessarily short then, and no firm conclusions could
reached. Later, some support for the KTHNY scenario w
drawn from some@13–15# but not all molecular dynamics
simulations@16#. On the other hand, first order transition
have most often been diagnosed from Monte Carlo~MC!
simulation results@17–22#. Lee and Strandburg recently ob
tained equilibrium results for small systems through M
simulations, in the constant pressure ensemble, of up
few hundred disks for about 107 MC sweeps@20#. They ob-
tained results for volume fluctuations and the free ene
barrier,DG, between the solid and the liquid phases. Know
edge of volume fluctuations is important because the la
heatDQ of the transition, if there is one, follows from i
(DQ5pDV for a system of hard disks, since there is
internal energy!. In addition,DG must increase as the sys
tem’s surface for a first order transition@23#. Lee and Strand-
burg’s data for systems of up to a few hundred partic
show a trend that points to a first order phase transition.
own results@24#, and those of Bagchi, Andersen, and Swo
@25#, seem to be the only recent ones to come out of M
work that lend some support to the KTHNY theory. How
ever, our results differ from those of Bagchi, Andersen, a
Swope for the hexatic phase. Whereas we find no trace
for a system of hard disks, they do, over an approximat
750 © 1997 The American Physical Society
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55 751MELTING OF SYSTEMS OF HARD DISKS BY MONTE . . .
1% wide density range, for systems of particles interact
through 1/r 6 potentials@26#.

Monte Carlo simulations have suffered from finite si
effects and limited computer running times. These two
fects are not separable. As Zollweg and Chester pointed
the equilibration timet for systems of about 104 disks can be
much longer than 106 MC sweeps@27#. This is illustrated in
Fig. 1 for 15 876 disks. Very long simulations are need
becauset}Lz ~wherez.2 is expected!, at the critical point
~and, even worse,t increases exponentially withL within a
first order transition region!. Thus, whereas Lee and Stran
burg @20# found it sufficient to do 107 MC sweeps for sys-
tems of 256 particles, we did many runs of over 23108 MC
sweeps for systems of 1024 particles.

Equilibrium results for 2D systems of hard disks, obtain
from MC simulations with both hard crystalline wall~HCW!
and periodic boundary conditions~PBC’s!, are reported here
Our simulations are longer than any other ones previou
reported by at least an order of magnitude. We have used
Metropolis algorithm in the constant pressure ensemble~that
we shall hereafter abbreviate as theNpT ensemble!
@12,18,20#. Some results for HCW boundary conditions ha
already been published@24#. Here we give additional result
and further details. We have not published any of our res
for PBC before. Because much of the work reported here
not been done at the time of publication of Ref.@24#, some
numerical results given in this paper may differ slightly fro
those therein.

A brief explanation for our choice of boundary conditio
follows. The HCW boundary conditions~described in Sec
II ! we use here have advantages over PBC’s. Equilibra
times are much shorter for systems with HCW’s. This
because HCW’s break the symmetry of the system. The
portance of symmetry breaking in phase transition work w

FIG. 1. ~a! Volume vs MC sweeps for systems of 15 876 dis
with hard crystalline walls, forp57.90, for two different initial
configurations: one obtained from previously expanding a de
ordered state, and the other one obtained from previously comp
ing a dilute disordered state.~b! Same as in~a! but for p57.875.
g
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first emphasized by Bogolyubov@28#. We can obtain reliable
equilibrium values for volume fluctuationŝ(dv)2& for sys-
tems of many thousands of particles only because equili
tion times are not as forbiddingly long for HCW’s as they a
for PBC’s. This is illustrated in Fig. 2. The system of 90
disks with HCW’s fluctuates well over an order of magnitu
faster than the system of 1024 disks with PBC’s. Howev
since all previous MC simulations for melting in 2D that w
know of had used PBC’s, the question naturally aris
whether the difference between the conclusions we draw
HCW’s and those of others@17–22# follow from the differ-
ence in boundary conditions. This question is important he
since the relevant correlation length exceeds the linear
of the system in regions of interest to us. In order to be a
to compare readily our numerical results and conclusi
with MC results that were obtained previously only f
PBC’s, we also report results we obtained for~smaller! sys-
tems with PBC’s. We also obtain, as an unexpected bon
results that are complementary to the ones obtained for
tems with HCW’s~e.g., probability distributions for the or
der parameter that yield interesting information that is u
available for HCW’s!.

The plan of the paper is as follows. The boundary con
tions, the algorithm used, the issue of equilibration tim
and further details about our computer runs are discusse
Sec. II. In Sec. III, results for the pressure versus volu
p(v) and volume fluctuationŝ(dv)2& are given. Data points
for ^(dv)2& obtained both directly and from derivative
~taken numerically! of p(v) are compared as a check on th
goodness of the equilibrium averages obtained.^(dv)2& is
examined as a function of system size. The evidence r
counter to a first order phase transition. A volume discon
nuity Dv for a first order phase transition, if evidence of

e
ss-

FIG. 2. ~a! Chart of volume vs MC sweeps for a system of 10
disks with PBC’s not far from the critical point forp57.965. It is a
small part of a run of 33108 MC sweeps.~b! Same as in~a! for a
system ofN5900 with HCW’s forp57.77, not far from the criti-
cal point. It is a large part of a run of 107 MC sweeps.
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752 55FERNÁNDEZ, ALONSO, AND STANKIEWICZ
were to turn up for larger values ofN, would have to be less
than 1% of the volume value upon melting. In additio
probability distributions for the volume,P(v), are obtained
from frequency of occurrence ofv in MC runs. Values for
the free energy barrier,DG, between the solid and the liqui
phases follow fromP(v). Both ^(dv)2& andDG are exam-
ined as functions of system size. It is found that the tre
reported by Lee and Strandburg@20# for smaller systems in
favor of a first order phase transition is reversed for lar
systems. This is further evidence against a first order ph
transition. In fact,P(v) for systems with hard crystalline
walls with up to 3844 particles donot even show a double
hump as a function of system volume~corresponding to
DG50). According to the KTHNY theory of melting in two
dimensions@4#, there is a singularity in the bulk modulu
B, at the melting point. We obtain the melting volume valu
vm51.25960.006, from the locations of the maximum va
ues of udB/dvu. In Sec. IV, the average value, fluctuatio
and fourth-order cummulants of the orientational order
rameter (f, defined therein! are examined. Data for̂f&
show that^f& drops to zero discontinuously upon meltin
Plots of ^(df)2& versus^f&, for systems of different size
provide further evidence that^f& does not vanish continu
ously asv→vm in the crystalline phase. Moreover, probab
ity distributions P(f) for f exhibit a sort of coexistence
between disordered states andf50.7460.02 states.@P(f)
is approximately size independent for 64<N<1024, once
again in accordance with a second order phase transit#
Yet further evidence that supports the conclusion that^f&
vanishes discontinuously upon melting, as predicted by N
son and Halperin, is provided in Sec. IV: a plot
^(dufu)2& versuŝ f&, for systems of different sizes. Plots o
fourth order cummulants off versuŝ f& are also consisten
with a discontinuity in^f&. Bounds for the extent~about a
1% volume change! of an intermediate phase~the hexatic
phase!, if one were to exist, also follows from the data show
in Sec. IV. Finally, some concluding remarks are made
Sec. V.

Throughout this paper the specific volume~actually an
area in 2D! v is given in units of the closest packing volum
a0, in the triangular lattice, and the pressurep is given in
units of kT/a0 throughout, wherek is Boltzmann’s constan
andT is the temperature. All errors quoted for values of t
average volume, for the order parameter and for its fluct
tions, were computed as follows. After equilibration, ea
run was divided into five intervals; the standard deviation
the five corresponding values of the quantity of interes
given as its error.

II. ALGORITHM AND BOUNDARY CONDITIONS

A. Boundary conditions

We use both hard crystalline wall~HCW! and periodic
boundary conditions. As HCW boundary conditions ha
not, as far as we know, been used before, a brief explana
for them follows. Consider a rectangular box of aspect ra
A332 that produces no strains in a triangular crystal latti
Let all ‘‘sites’’ on the boundary be occupied by disks, as
Fig. 3. They make up the ‘‘crystalline’’ walls. The position
~but not the sizes! of the disks that make up the HCW’
,
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remain fixed throughout the simulation.N5(2n22)2 disks
inside the box are the system’s ‘‘particles.’’ All 22n disks are
of equal size, and remain so as their radii vary in unis
~simulating volume variations of the system!. For v*4a0,
wherea0 is the closest packing volume, escape through g
between fixed disks would be possible if there were no
ditional constraints, such as periodic boundary conditio
~PBC’s!. For v.4a0 these conditions may be thought of a
PBC’s plus a symmetry breaking array of fixed scatterers
the boundaries. Here^v&,1.5a0 and ^(v2^v&)2&1/2

,0.014ao ~see below!. Consequently,v never comes close
to one-half of 4a0 in our simulations, and HCW’s behave
therefore as impenetrable walls throughout. Because t
break the symmetry of the system, HCW’s ease nucleatio
crystal growth, much as is done experimentally when cr
tals are grown from the melton a substrate. Systems of
103 disks, for instance, turn out to equilibrate at least
times faster for HCW’s than for PBC’s.

B. Algorithm

We perform MC simulations for a hard disk system with
constant number of particles, pressure, and temperature;
is, in the so calledNpT ensemble. In it, whether an a
tempted change of the system’s particle configuration an
volume is made or not, depends on the value
DV/kT[ND ln(V)1(DE1pDV)/kT, whereDE andDV are
the corresponding changes in energy and volume, res
tively. Detailed balance must, of course, be obeyed, so th
some transition is allowed with probability 1 whe
DV,0, then the corresponding reverse transition must t
place with probability exp(2DV/kT). ~See Refs.@12,18,20#
for further details.! We implement it as follows: after allN
particles in the system are given a chance to move, an
tempt at changing the system volume is made. We do
allow particle moves beyond a distance ofAao/8, which
gives an acceptance rate of about a 40%. We then attem
increase or decrease all particle radii~including the ones tha
make up the walls! by the same amount with equal probab

FIG. 3. Configuration of (2422)2 particles with hard crystalline
walls. The white disks are fixed on triangular lattice sites. Th
make up thecrystalline walls. The N5(2n22)2 black disks
(n54 in this illustration! inside the walls are the system’s particle
All disks, white and black, are always kept of equal size.
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55 753MELTING OF SYSTEMS OF HARD DISKS BY MONTE . . .
ity. Particle radii are increased only if no overlap ensu
between any two disks. Attempts to make all disk ra
smaller~corresponding to a total volumeincrementof DV)
are only realized a fraction of the times given b
exp@2DV/kT# ~with DE50, since smaller radii produce n
disk overlaps!. That simulates variations of the system’s vo
ume. Specific volume variations larger thanDv52/Np are
not allowed. Much larger variations would inconvenien
reduce the acceptance rate.

In order to save time in the search for any overlap
tween pairs of disks that might arise whenever a disk
moved, we use a cell method that is described next.
choice of cell size is guided by the following consideration
We want cells that are too small to be able to lodge two di
in them. On the other hand, fewer neighboring cells have
be inspected for possible overlaps between pairs of disks
large cell sizes. Taking into account the range of parti
densities of interest to us, we divide the system’s box i
4n34n rectangular cells.~Only one out of four cells are oc
cupied.! A table that is updated whenever a particle mov
lets us know which particle is in any given cell at all time
In order to save computer time, we let particle coordinates
integers that can be as large as 230. This enables us to assig
cells to particles, after they move, with one single logic
programming instruction.

C. Running times

As is remarked above, very long MC simulations a
needed in order to obtain goodequilibrium results. Volume
fluctuations are specially slow. That is because the acc
tance rate becomes very small ifDv@kT/pN, since,
exp(2pNuDvu/kT)!1 then, anduDvu@1/pN would lead to
some pairs of disks overlapping with a high probability f
Dv,0.

1. Hard crystalline walls

The evolution of the volume of a system of 15 876 dis
is shown in Fig. 1~a! for two different initial conditions: a
disordered configuration and an ordered one. The disord
configuration was obtained by previously compressing
system from another disordered configuration at lower d
sity. The ordered configuration was obtained by previou
expanding the system from another completely ordered c
figuration at a higher density. Both evolutions in Fig. 1~a! are
for p57.90. Similarly, in Fig. 1~b!, for p57.875. It takes the
system nearly 107 MC sweeps to equilibrate. Data points fo
the largest systems we have examined were obtained
pairs of runs —one of them coming from a disordered st
and the other one originating from a crystalline configu
tion. Averages were performed only after convergence
been achieved. ‘‘Maps’’ for local bond orientation~to be
explained below!, as well as crystalline structure facto
graphs, are shown in Figs. 13 and 14, respectively, for
four final states of the runs shown in Fig. 1. There is
apparent history dependence.

Our runs vary in length withN and withp. In addition to
many shorter runs, at least seven runs were performed in
~40–100!3106 MC sweeps range forN5 900, five runs in
the (20250)3106 MC sweeps range forN5 3844, and
s
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eight runs in the~10–35!3106 MC sweeps range forN5
15 876.

2. Periodic boundary conditions

We estimate the time scale necessary to obtain equili
tion and reliable equilibrium averages for PBC’s from tim
evolutions such as the one shown in Fig. 2~a!. Relaxation
‘‘times’’ for systems of 1024 particles can be as long
about 107 MC sweeps.@For a comparison with time scale
for systems of about equal size but with hard cristalli
walls, see Fig. 2~b!.#

Figure 4 shows charts of volume versus ‘‘time’’ for
system of 4096 particles. The longest evolution@shown in
Fig. 4~a!# is for p57.9175. It might be thought that the sy
tem is in equilibrium. The other evolution, the one th
shows large volume fluctuations@shown in Fig. 4~b!#, is for a
slightly larger pressure,p57.92, which should yield a
smaller mean value of the volumein equilibrium. Since it
does not, it follows that equilibration has not in fact be
achieved. Thus for systems of 4096 particles with PBC
nearly 108 MC sweeps seem insufficient for equilibration
ensue in the critical region. For this reason, we give res
for systems of 4096 particles with PBC’s only away fro
criticality.

For N51024, many of our runs went on for 108 MC
sweeps, at least 23108 MC sweeps were performed on 1
runs in the transition region. ForN5256 and 64 runs need
not be as long. We executed 10 runs in the~5–15!3107

MCS sweeps range. Many additional shorter runs were p
formed, away from the transition region, for each of the
systems.

III. VOLUME FLUCTUATIONS

In this section, we report results for the mean volum
^v&, its fluctuationŝ (dv)2&, and for its probability distribu-

FIG. 4. ~a! Specific volume vs MC sweeps for a system of 40
disks, with PBC’s, forp57.9175.~b! The same as in~a!, but at a
slightly higher pressurep57.92. The fact thatv is larger in~b! than
in ~a! shows that equilibrium is not achieved in these runs.
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754 55FERNÁNDEZ, ALONSO, AND STANKIEWICZ
tion P(v). The main body of evidence that supports our co
clusion that melting in two dimensions is a second or
transition is given in this section.

A. Volume fluctuations

Data points obtained for̂v& as a function ofp are plotted
asp versuŝ v& in Figs. 5~a! and 6~a! for HCW’s and PBC’s,
respectively. The continuous lines shown are cubic spline
to the data. Data points for^(dv)2& are shown in Figs. 5~b!
and 6~b! for HCW’s and PBC’s, respectively.@The continu-
ous lines shown follow, using the relatio
]^v&/]p52N^(dv)2&, from derivatives~taken numerically!
of the cubic spline fits forp(v).# The agreement between th
data points~obtained from fluctuations throughout MC run!
and the continuous lines shown in Figs. 5~b! and 6~b! is a
measure of the quality of our equilibrium results. We det
mine the melting point volume value,vm51.25960.006,
from the Bulk modulus data shown in Fig. 7.

We wish to establish whether there is a latent heat
order to diagnose the order of the transition. Since the ene
of hard disks is zero, the latent heat~per particle! is given by
pDv. Dv can be determined from data for^(dv)2&; for mac-
roscopic systems,^(dv)2& is nonvanishing in the coexistenc

FIG. 5. ~a! Data points forp vs volume for systems of (s)
900, (d) 3844, and~1! 15 876 disks, with HCW’s.p is given in
units of kT/a0, and thatao is the closest packing value of th
specific volume, andv is in units of ao . Error bars, which are
horizontal, are of about the size of the data points shown.~b!
^(dv)2& vs ^v& for the same systems as in~a!. Full lines are for
2]v/]p, obtained from cubic spline fits top(v) curves in~a!. The
points shown are obtained from fluctuations.
-
r

ts

-

n
gy

region of a first order phase transition. More quantitatively
plot of ^(dv)2& versus^v& would give a parabola for a firs
order phase transition; its maximum value would
(Dv)2/4, and it would vanish atv5v1 and v5v2 (v1 and
v2 are the specific volumes of each of the two hypotheti
phases!. Inspection of Figs. 5~b! and 6~b! shows that the
maximum value of̂ dv2& is cut down by factors of about 3
and 2, respectively, wheneverN→4N. Furthermore, even if
this trend were not sustained asN→`, even a value as large
as 531025, say, for theN→` limit value of the maximum
of ^dv2& @see Fig. 5~b!#, would still imply Dv.0.014.
Clearly, the volume discontinuity of a first order transition,
one were to exist, would have to be within a range of a
proximately 0.01vm . This value is several times smaller tha
the values often given by MC simulations that diagnose
first order transition@20,29#, and half as large as the valu
given more recently in Ref.@22#. Our results are, however, in
agreement with the trend suggested by Zollweg and Che
for the tie line @21#: that Dv,0.025 for a system of
N516 384 with PBC’s, and from exploratory runs fo
N565 536 particles they suggested thatDv might vanish
completely asN→`.

Results for the bulk modulusB ~given by2v]p/]v) are
shown in Figs. 7~a! and 7~b! for systems with HCW’s and

FIG. 6. ~a! Data points forp vs v for systems of (h) 64,
(L) 256, and (s) 1024 disks, with PBC.p is given in units of
kT/a0, and thatao is the closest packing value of the specific vo
ume. Error bars, which are horizontal, are of about the size of
data points shown.~b! ^(dv)2& versus^v& for the same systems a
in ~a!. Full lines are for]v/]p, obtained from cubic spline fits to
p(v) curves in~a!. The points shown are obtained from fluctu
tions.
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55 755MELTING OF SYSTEMS OF HARD DISKS BY MONTE . . .
PBC’s, respectively. The data points in Fig. 7~a! follow from
taking finite derivatives of the data shown in Fig. 5~a!. This
procedure gives data points with less scatter than would
obtained using values of̂ (dv)2& through the relation
v/B5N^(dv)2&. This relation and data for̂(dv)2& are used
for plotting the points shown in Fig. 7~b! for systems with
PBC’s @for which our statistical errors are much smaller th
for systems with HCW’s, as Figs. 5~b! and 6~b! illustrate#.
ThatB does not decrease as 1/N in any given volume range
as it would for a first order transition, is not as easily app
ciated in Fig. 7 as it is in Figs. 5~b! and 6~b!.

We can use the relation 1/m11/(l1m)5v/4p ~ex-
pressed in our own units for pressure and volume, wherm
andl are the Lame´ constants of elasticity theory!, derived
for the melting point by Nelson and Halperin@4,5#, to obtain
a lower bound forB at the melting point.B5l1m, which
follows from a continuum elastic description of solids, is n
expected to hold up to the melting point for systems of dis
Not having computed the value ofm, we obtain a bound for
B replacingm andl1m by the larger valuesl1m andB,
respectively~see footnote 37 in Ref.@5#!. The bound that
follows,B>8p/v, is shown as dotted lines in Figs. 7~a! and
7~b!.

FIG. 7. ~a! Bulk modulus vs volume for systems of various siz
~for the number of particles shown! with HCW boundary condi-
tions. The data points follow from taking finite derivatives straig
forwardly of the data points shown in Fig. 5~a!. The vertical line is
at the melting point value,vm51.261. The dotted line is an uppe
bound that follows from the prediction of Nelson and Halperin
volving the bulk and shear moduli at the melting point. See text
details.~b! Same as for~a! but for systems with PBC’s. The dat
points shown here obtained from fluctuations, usi
]^v&/]p52N^(dv)2&.
e

-

t
.

B drops sharply nearv51.26 in both Figs. 5~b! and 6~b!.
That behavior, in the vicinity of the melting point, is no
surprising, since2d(l1m)/dv→` at v5vm is predicted
by the KTHNY theory@4#. A slight complication arises be
causeudB/dvu itself remains finite in the KTHNY theory.
This is becauseB has anessentialsingularity, given by
]2F/]v2 ~as follows from the definition ofB), and the sin-
gular part of the free energy,F, is j22, and
j;exp@2b/(v2vm)

1/2# in the KTHNY theory. Let the point
where the maximum value ofudB/dvu is located bevm8 . It
does not follow rigorously thatvm<vm8 , but it seems quite
unlikely that it be otherwise. We findvm8 51.26160.004 and
vm8 51.25760.005 for HCW’s and PBC’s, respectively. Ev
dence for settingvm5vm8 is given in Sec. IV.

B. Volume distributions

We obtain the frequency of occurrencef (v), for 0.001
wide Dv slots, from counting the number of times that th
specific volume is found between valuesv andv1Dv in a
given MC run. Obviously, the probability density that a sy
tem’s specific volume takes the valuev fulfils P(v)} f (v).
f (v) is shown in Fig. 8 for systems of 256 and 1024 partic
with PBC’s. Note how volume fluctuations decrease asN
increases. This is in keeping with results of the previo
subsection. Figures 9~a!, 9~b!, 9~c!, and 9~d! illustrate how
f (v) varies with pressure in the range 7.80<p<7.90, for
N51024. The data points have not been smoothed. T
were obtained from MC runs of over 23108 MC sweeps.
Much shorter runs give poor statistics.

More information about the nature of the melting tran
tion follows from the knowledge of the free energy barri
DG that separates the high and low volume phases.DG must
increase as the system’s surface for a first order transi
@23#. In order to obtain accurate values forDG, we first
define anassymmetryvariableq. Let f 2 and f 1 be the two
maximum values off (v), and f 0 be its minimum value in
between the two maxima. We define

q[
f 22 f 1
2 f 0

. ~1!

r

FIG. 8. Frequency of occurrence for the specific volumev for
systems ~with PBC’s! of (h) N5256 and (s) 1024 for
p57.865 andp57.65, respectively. These data points follow fro
runs of over 23108 MC sweeps. The data have not been smooth
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Whether it makes more sense to defineq according to the
areas under the two humps off (v) makes little difference
here, because of the observed shape off (v). We define a
free energy barrierDG(q) between the ‘‘low’’ and ‘‘high’’
volume phases,

e2DG~q!/kT5
2 f 0
f 21 f 1

. ~2!

Data points forDG(q)/kT are shown versusuqu in Fig. 10
for several system sizes (N5256, 576, and 1024!. Data
points obtained forN564 and 400, from runs of over 108

MC sweeps are not shown in this figure.

FIG. 9. ~a! Frequency of occurrence for the specific volumev
for a system~with PBC’s! of N51024 for p57.85. These data
points follow from runs of over 23108 MC sweeps.~b! Same as in
~a!, but for p57.86.~c! Same as in~a!, but for p57.865.~d! Same
as in ~a!, but for p57.87. The data have not been smoothed.
bins are forDv51023.

FIG. 10. Data points forDG/kT are plotted vsq, defined by
q[uP22P1u/2Po , whereP2 andP1 are the two maximum value
of P(v), and Po is its minimum value.n, h, andd stand for
N5256, 576, and 1024, respectively. Equation~2! is used to obtain
the values ofDG/kT shown. These points are obtained from da
such as are shown in the previous figure for systems with PBC
We let DG/kT be theq→0 limit of DG(q)/kT ~which
we obtain with fourth order polynomial fits to the data!. This
procedure yields fairly accurate values forDG/kT ~and its
errors can be easily assessed!. The values thus obtained fo
L21DG/kT, as well as those obtained by Lee and Strandb
@20# for smaller systems, are displayed in Fig. 11 vers
1/L. Clearly, the trend established for smaller systems by
data of Lee and Strandburg, that favors a first order tra
tion, is reversed for larger systems.

We conclude this section with the following observatio
DG/L can become independent ofL only if the correlation
length is smaller than the linear size of the system. Bound
conditions would not matter much then, and double hump
graphs forf (v) would therefore ensue for HCW also. Plo
of f (v) that contradict this assumption are shown in Fig. 1
Thus, it seems that, in theN→` limit, there is no volume

l

.

FIG. 11. Data points forL21DG/kT vs 1/L. L stand for data
from Lee and Strandburg;d are for our own data.

FIG. 12. Frequency of volume occurrences for systems w
HCW boundary conditions.d are for 900 particles. All other data
points are for systems of 3844 particles, for the three pressure
ues shown. The data points for 900 particles are taken from a ru
108 MC sweeps. Other data points are taken from runs of~30–37!
3107 MC sweeps. Note that, forN53844, f (v) ‘‘moves,’’ as the
pressure varies, in a fashion that is contrary to the existence
double humpedf (v).
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FIG. 13. Pictures show anglea as a function of position for each Voronoi cell, for systems with HCW’s. White stands fora.0°, and so
on, up to black fora.630°. Picture~a! @~d!# is for the final state of the two runs shown in Fig. 1~a! that started from an ordered~disordered!
state. Picture~b! @~e!# is for the final state of the runs shown in Fig. 1~b! that started from an ordered~disordered! state. The instantaneou
volumes for~a!, ~d!, ~b!, and~e! are 1.266, 1.265, 1.285, and 1.290, respectively. Two final states forv.1.32 and 1.35 are shown in~c! and
~f!, respectively.
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discontinuity, and the free energy barrier between the
hypothetical phases becomes size independent.

IV. ORIENTATIONAL ORDER

We now turn our attention to the behavior of the orien
tional order parameter, more specifically of its average va
its fluctuations, and its probability distribution. We exami
the evidence for the conclusion that the orientational or
parameter vanishes discontinuously upon melting, and
that either there is no hexatic phase in 2D systems of h
disks, or else~if it exists! that the volume varies by less tha
about 1% in it.

A. Orientational order parameter

We define the orientational order parameter followi
Nelson and Halperin@4#. Nearest neighborsare defined first.
Whether two particles are nearest neighbors may be dec
by a rigorous scheme@30# that is a generalization of Wig
ner’s cells for lattices, or through somead hocdefinition that
makes use of particle distances only. We have used
former definition for the sort of crystalline maps that a
shown in Figs. 13~a! and 15~a! ~explained below!, but have
used the latter definition~for speed of execution! in our MC
computer program.~In our computer program, two particle
qualify as nearest neighbors if the square of the dista
between them is less than 1.3 times the specific volume!

We define the orientational order parameter in two ste
Let un

m be the angle between the ‘‘bond’’ linking neare
neighbor particlesn andm and some arbitrary reference lin
An anglean ~that shows how bonds out of particlen are
oriented! is defined through the relation
o

-
e,

r
d
rd

ed

he

e

s.

ane
i6an[

1

zn
(
m

e6iun
m
, ~3!

where the sum is over allzn nearest neighbors of thenth
particle, andan is a real number that satisfies 0<an<1.
an51 for a perfectly crystalline configuration.

Spatial variations ofa may be displayed in sort of maps
that we shall call bond orientation~BO! maps for short. Such
maps are exhibited in Fig. 13 for the final configuratio
obtained from each of the four computer runs exhibited
Figs. 1~a! and 1~b!, and for v51.32 and 1.35 for
15 876-particle systems. White stands fora.0°, and in-
creasingly darker grey scales are for other values ofa, up to
630°. The HCW boundary conditions forcea.0 near the
walls. The two BO maps on the left hand side of the figu
are for the two final configurations of Fig. 1~a!, for which
p57.90. The two BO maps on middle are for the final co
figurations of Fig. 1~b!, for which p57.875. The top and
bottom BO maps on the column at the right are for config
rations withv51.32 and 1.35, respectively.

For comparison, we show graphs of the structure facto
Figs. 14~a! and 14~b!–14~f! for the final configurations
whose BO maps are shown in Figs. 13~a! and 13~b!–13~f!.
Note the slight anisotropy shown by the graphs
v.1.29. This is to be expected, since the correlation len
~see below! is nearly as long as the linear size of the syst
for v51.29.

No marked dependence on initial conditions is show
Clearly, melting~loss of weak crystalline order! and loss of
orientational order take place asv increases.

BO maps and crystalline structure graphs for systems w
PBC’s show similar behavior. Graphs and BO maps
N51024 and 4096 are displayed on the top and bottom
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FIG. 14. Graphs show the structure factorS(k) as a function ofk5kx ,ky for systems with HCW’s. Graphs~a! and ~b!–~f! are for the
final configurations whose crystalline maps are shown in the previous figure.
t
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th
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or-
ap

w,

n-
ta-
of Fig. 15, respectively. Spatial variations ofa are shown on
columns 1 and 3. Each graph on columns 2 and 4 shows
structure factor for the configuration whose BO map is d
played on its left hand side. The left~right! half of the figure
is for ordered~disordered! states with the same value of vo
umev51.26 (v51.31).

Note that orientational order is correlated on Fig. 15~c!
over a distance that is comparable to the linear size of
N51024 system. The maps of Fig. 15~g! are for a
N54096 system at a value ofv ~1.31! that is the same as fo
he
-

e

Fig. 15~c!. Thus, whereas weak long-range orientational
der might have been erroneously suspected from the BO m
for theN51024 system, theN54096 system clearly exhib-
its many orientation domains. In fact, as will be seen belo
v51.31 is located deeply in the isotropic phase.

In order to be able to proceed with more quantitative co
siderations, we now conclude the definition of the orien
tional order parameter. Let

fn[ane
i6an, ~4!
d

FIG. 15. Spatial variations of anglea @defined in Eq.~3!# are shown on columns 1 and 3, for systems with PBC’s. Black stands fora50°,
and so on, up to white fora5630°. Structure factorsS(k) are shown as functions ofk1 ~on the horizontal axis! andk2 ~on the vertical axis!
on columns 2 and 4. The pair of pictures~a! and~b! @~e! and~f!# are for a configuration ofN51024 (N54096) and volumev51.262. The
pair ~c! and~d! @~g! and~h!# is for N51024 (N54096) and volumev51.318. Graphs and BO maps forN51024 and 4096 are displaye
on the top and bottom rows, respectively.
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and

f[Ñ21(
n

fn , ~5!

where the sum is over a set ofÑ particles in the system. Thi
is the definition of the orientational order parameter we u
For HCW boundary conditions, we only sum over partic
within a small inner box ~that holds Ñ particles, and
^Ñ&5N/16) within the hard wall box. For PBC’s the sum
the above equation is performed over all particles.f gives a
measure of order for systems that crystallize on triangu
lattices.^f&51 for a perfectly crystalline triangular lattice
and ^f&50 for a system in which the orientational symm
try is not broken. We do not take the absolute value off in
the calculation of̂ f& for systems with HCW’s. There is no
need for it then because the HCW boundary conditions br
the rotational symmetry of the system. For PBC’s, aver
values off stand for ^ufu&. The reason for the absolut
value is, of course, that̂f& would otherwise vanish for al
densities of any finite system with PBC’s, since no spon
neous symmetry breaking can occur then.

Data points for̂ f& versus volumêv& are shown in Figs.
16~a! and 17~a! for systems of various sizes with HCW’s an
PBC’s, respectively. We next argue that^f& vanishes dis-
continuously upon melting. The data for^f& show no size
dependence for̂v&,1.263 for HCW’s, nor for̂ v&,1.259
for PBC’s. Furthermorêf&*0.75 therein. Since we foun

FIG. 16. ~a! Quantity^f& vs ^v& for the shown values ofN hard
disks in a box with HCW’s.~b! ^udfu2& vs ^v& for various values
@same as in Fig. 1~a!# of N hard disks;df[f2^f&. Lh6^udfu2& vs
b21ln(j6 /L) is shown in the inset; h650.3, b50.77,
j65exp(b/u1/2), u5v2v i , andv i51.260.
e.
s

r

k
e

-

in Sec. III that vm,1.26160.004 for HCW’s, and that
vm,1.25760.005 for PBC’s, we conclude that^f& vanishes
discontinuously atv5vm , as predicted by Nelson and Ha
perin @4#. More specifically,^f& vanishes from the value
0.74 ~at vm51.261) and 0.75~at vm51.257), just below
melting, for HCW’s and PBC’s, respectively. Independe
evidence of this conclusion is to be found below in Se
IV C. We take the mean of these two value
(vm51.25960.006) to be the melting volume value.

B. f fluctuations

Definitions of the orientation correlation lengthj6 and of
the exponenth6 follow from the general expression

^fnf l&;e2r nl /j/r nl
h , ~6!

wherer nl is the distance between particlesn andl , andfn is
defined in Eq.~4!.

We now examine the behavior of̂udfu2&, where
df[f2^f&. Consider a plot of̂ udfu2& versus ^f& for
various system sizes. Since^udfu2&;1/N for N1/2@j6, it
follows that ^udfu2&;1/N for all nonzero values of̂f&,
except for the critical region near^f&'0 whose size van-
ishes asN→`, if ^f& vanishescontinuouslyat the critical
point. Such a behavior is illustrated in Fig. 18 for the Isi
model in 2D, where fluctuations in magnetization are plot
versus the magnetization for systems of various sizes. Th

FIG. 17. ~a! Quantity^f& vs ^v& for systems with PBC and the
number of particles shown.~b! ^udfu2& vs ^v& for the values ofN
shown in~a!; ^udfu2& vs ln(j6 /L) for the values ofN shown in~a!,
b50.9, j65exp(b/u1/2), u5v2v i , andv i51.265.df[f2^f&.
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to be contrasted with the behavior exhibited in Fig. 19~a! and
19~b!, for systems with HCW’s and PBC’s, respectively. T
observed behavior is compatible with criticality over the e
tire interval 0<^f&&0.7, that is, with a discontinuous dro
from ^f&'0.7 in the crystalline phase just belowv5vm to
^f&50 just abovev5vm . This is in agreement with the
conclusion drawn in Sec. IV A.

We next examine hoŵudfu2& behaves as a function o
volume in order to determine the extent of the isotro
phase.̂ udfu2& is expected to rise aŝv& decreases, until the
rise is arrested when the correlation lengthj6 becomes as
large as the linear sizeL of the system. Figures 16~b! and
17~b! show^udfu2& versus^v& for systems of various sizes
with HCW’s and PBC’s, respectively. Plots ofLh6^udfu2&
versusb21ln(j6/L) data points collapse nicely into a seem
ingly universal curve, as shown in the inset of Fig. 16~b!,
after using j65exp(b/u1/2), where u5uv2v i u, with
v i51.260,b50.77, andh650.3, for systems with HCW’s.
This is in accordance with an isotropic phase that exte
down to v5v i , where j6 ~whose behavior we have pre
scribed using the KTHNY theory! diverges. Scattering o
data points becomes significant foruv i21.260u.0.005. That,
plus the corresponding variations ofb and h6, gives
v i51.26060.005,b50.860.1, andh650.3060.05.

The same procedure applied to the^udfu2& data for sys-
tems with PBC’s, yields the results shown in the inset of F
17~b! using j65exp(b/u1/2), and v i51.26560.005, and
b50.960.1. Note that whereasLh6^udfu2& is scaled for
HCW, the factorLh6 is omitted for PBC’s. This is becaus
the best value ofh6 found for PBC’s ish650. The values
found for v i for PBC’s and HCW’s agree within statistica
errors. So do the values found forb. However, the values
found forh6 clearly disagree. This is discussed in Sec. V

Putting together results for HCW’s and PBC’s we arri
at v i51.26260.007. Sincevm51.25960.006, we must con-
clude thatv i2vm , the extent of hexatic phase~if there is

FIG. 18. Plots of magnetization fluctuations^(dm)2& vs the
magnetization m for two-dimensional Ising systems o
L58, 16, 32, and 64. AsN increases, the range of values ofm
where^(dm)2& does not decrease as 1/N becomes smaller, in ac
cordance withm vanishing continuously at the critical point.
-

s

.

one!, lies unresolved within our statistical errors. More info
mation about the hexatic phase is given in Sec. IV D.

C. f distributions

This section is devoted to systems with PBC’s. The c
responding results for systems with HCW’s are unintere
ing. (f distributions for systems with HCW’s behave muc
as volume distributions do: there are no double humps
any value of the pressure.! Let P(ufu) be the~unrenormal-
ized! probability density that the absolute value of the ord
parameter have a value withinufu andufu1dufu. Whenf is
distributed isotropically, thenP(ufu)/ufu is proportional to
the joint probability density for the real and imaginary pa
of f. For finite systems,P(ufu)/ufu is centered onf50 in
the isotropic phase, well above the critical point, but it
centered on a nonzero value in the crystalline phase
v!vm . It turns out that, for PBC’s,P(ufu)/ufu is ‘‘doubled
humped’’ near the melting point. Such plots are shown in
Figs. 20~a!–20~d! for a system of 1024 particles under pre
suresp57.85, 7.86, 7.865, and 7.87, respectively. Clear
f distributions are affected by pressure variations much
volume distributions are affected~see Fig. 9!. Indeed, fluc-
tuations inf andv are correlated. This is discussed in Se
V.

FIG. 19. ~a! Data points for^udfu2& vs ^f& for systems of
various sizes, with HCW’s.~Recall thatÑ is the number of particles
in a subsystem that only holds 1/16 of the total numberN of par-
ticles in the whole system.! ~b! Same as in~a!, but for systems with
PBC’s. The observed behavior is compatible with a critical beh
ior over the interval 0<^f&&0.7; that is, with a discontinuity in
^f& at the melting point.
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55 761MELTING OF SYSTEMS OF HARD DISKS BY MONTE . . .
P(ufu)/ufu versus f is shown in Fig. 21 for
N51024, 576, and 256 forp57.87, 7.83, and 7.66, respec
tively. The three distributions shown are remarkably alik
~A distribution off for N564, that is not shown for the sake
of clarity, differs negligibly from the rest.! Coexistence of
two phases, one forf50 and the other one for
f50.7460.02, for macroscopic systems might~errone-
ously! be inferred from inspection of Fig. 21. Coexistence o
two phases in a first order phase transition would imply
free energy barrier, between the^f&50 phase and the crys-
talline phase, that would increase as the surface of the s
tem. However, no system size dependence is observed
Fig. 21. This fact is more obvious here than for volum
fluctuations. The qualitative conclusion for the free energ
barrier, however, is the same: it is size independent.

On the other hand, whereas the trend exhibited in Sec.
is consistent withvolume fluctuations vanishing~for all
pressures! in the N→` limit, P(ufu)/ufu peaks at

FIG. 20. QuantityP(ufu)/ufu for systems of 1024 disks with
PBC’s. Figures ~a!, ~b!, ~c!, and ~d! are for pressure values
p57.85, 7.86, 7.865, and 7.87, respectively. Data points for~a!,
~b!, ~c!, and ~d! are obtained from the same runs as data on Fig
5~a!, 5~b!, 5~c!, and 5~d!. Each bin is forDufu51023.

FIG. 21. QuantityP(ufu)/ufu is shown vsufu for systems~with
PBC’s! of N5256 for p57.66, N5576 for p57.83, and
N51024 forp57.87.
.
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f50.7460.02, and no significant size dependence for it
observed. This contrasting behavior, between fluctuation
v and inf, is discussed in Sec. V.

The peak location ofP(ufu)/ufu at f50.7460.02 pro-
vides an independent determination of the value of^f& just
below melting. In addition, it follows from the data shown
Fig. 17~a! that the value^f&50.7460.02 corresponds to
v51.25860.004. This provides a check on the value ofvm
established above by another method.

D. Cumulants

Fourth order cumulants have sometimes been used to
cate critical points, and to diagnose whether a transition is
first or second order@31#. We report the results we obtaine
next. They are consistent with the conclusions arrived at t
far, but they lead us to nothing new.

Consider the fourth order cumulantD45^ufu4&
23^ufu2&2. In order to make comparison with other pu
lished work easier, we work with quantityu, given by
u52D4 /(3^ufu2&2), which we will refer to asthe cumulant.
Clearly, u5 2

3 for macroscopic systems in the crystallin
phase, sincêf&Þ0 therein, and fluctuation contribution

FIG. 22. ~a! Data points for the fourth order cumulantlike qua
tity u512^ufu4&/(3^ufu2&2), vs volume, for systems with HCW’s
for the sizes shown. The arrow shows where curve fits to the d
points for different system sizes meet.~b! Same as in~a!, but for
systems with PBC’s for the sizes shown.
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762 55FERNÁNDEZ, ALONSO, AND STANKIEWICZ
vanish for macroscopic systems. On the other hand,u5 1
3 for

macroscopic systems in the isotropic phase, since the ce
limit theorem then gives ajoint normal probability density
for the real and imaginary parts off. It is straightforward to
show thatu increases with system size~up to 2

3! in the crys-
talline phase.u decreases with system size~down to 1

3! in the
isotropic phase. It has been argued~see Ref.@22# and refer-
ences therein! that u would be size independent in th
hexatic phase. Plots ofu versus specific volume are shown
Figs. 22~a! and 22~b! for systems of 900 and 3844 particle
~with HCW’s!, and for systems of 1024, 256 and 64 pa
ticles ~with PBC’s!. Let vc be the volume value such tha
cumulant curves are clearly size dependent forv.vc , where
u decreases asN increases.vc5v i is expected. Polynomia
~of second, third, and fourth order! fits to the data give
vc51.26360.005 for HCW’s, andv51.26760.005 for
PBC’s. This is in agreement, within statistical errors, of t
value (v i51.26260.007) we have obtained forv i .

It is instructive to plotu versus^f& for various system
sizes, as shown in Figs. 23~a! and 23~b!. The trend shown
contradicts the hypothesis that^f& vanishescontinuously
upon melting, because if that were so, then^f&Þ0 would
imply a crystalline state, from which it would follow thatu
would increase withN ~up to the value23 in theN→` limit !
for any nonzero value of̂f&. Sinceu seems rather indepen
dent of N, and u is significantly smaller than2

3 for
^f&&0.7, a discontinuous drop in̂f& upon melting follows
once more.

FIG. 23. Data points for the fourth order cumulantlike quant
u512^ufu4&/(3^ufu2&2), vs ^ufu&, for the system sizes shown.~b!
Same as in~a!, but for systems with PBC’s for the sizes shown.
ral

-

V. CONCLUSIONS AND REMARKS

A. Conclusions

We first summarize our main conclusions. Specific v
ume fluctuations decrease as system size increases, in a
dance with a second order phase transition@see Figs. 5~b!
and 6~b!#. Further support for the melting transition in 2
being of second order follows from the observation~see
Figs. 11 and 12! that the free energy barrierDG(v) for a
fluctuation of volumev seems to become independent
system size forN*400 at criticality. Thus the trend estab
lished previously@20# for DG(v) for N&400, thatDG(v)
grows as the system’s surface area, is reversed for la
values ofN. For hard crystalline walls,DG(v).0, at least
for N<3844 —see Fig. 12. Furthermore,DG(f) exhibits no
size dependence throughout the full range of system size
studied with PBC’s~see Fig. 21!.

Our second conclusion is that^f& drops discontinuously
~from ^f&50.7460.02) to zero at the melting point, as pr
dicted by Nelson and Halperin. We draw this conclusi
from three observations:~1! the size independence shown b
^f& for v<vm , the fact that^f& is far from vanishing
therein, and the assumption that^f&50 for v.vm ; ~2! the
behavior ofP(ufu)/ufu at criticality ~see Fig. 21!; ~3! the
weak size dependence exhibited bŷudfu2& for
0,^f&&0.7 @see Figs. 18, 19~a!, and 19~b!#; and ~4! the
fourth order cumulant off as a function of̂f& differs from
the value~ 23! it must have in the crystalline phase, and see
to be size independent, for 0,^f&&0.7.

We find no hexatic phase. If it exists for systems of ha
disks, then its extent is quite small and lies unresolved un
our statistical errors. (v i2vm50.003 is small with respect to
the errors inv i andvm , which are 0.007 and 0.006, respe
tively.!

B. Remarks

Some caveats for the conclusions we have drawn fr
ournumericalresults follow. We cannot rule out a first orde
phase transition coexistence region, or a hexatic phase
which the volume can vary by less than 1%. We cannot r
out either that̂f& vanishes continuously at the critical poin
as, for instance,̂f&;(vm2v)b, for v,vm , though consis-
tency with our data would require thatb&0.1. We estimate
the latter bound as follows. Consider the plots shown in F
18, 19~a!, and 19~b!. All data points for the Ising model with
N564, 256, and 1024 spins collapse into one seemin
universal curve if we plot ^(dm)2&L1/41e versus
^m&L1/81e/2; that is, if we shift the exponent values for th
susceptibility and form away from their correct value bye
and by e/2, respectively, wheree50.14. ~Data points for
N54096 do not scale as well with the rest of the data,
these wrong exponent values.! Similarly, all our data points,
for Ñ564,256, and 1024 collapse surprisingly well into o
curve when we plot ^udfu2&Le and ^f&Le/2, where
e50.15. Unfortunately, we have no data available~as we do
for the Ising model! that would allow us to check whethe
indeed scaling does become worse, with these exponents
larger systems.



,

e
, b

ts
e
nt

o
e
s
t.
ur

in

e

su

e
f

ig

se

on

ui
te
r
e
r-
n
r
gl

,
b
ow

m

op

-

rt

e

, t
an

ud-

s
er
r

.
rs.
les
-

n-

er
r
out

ts,

m-

n.
ity
ty
ut

he

g,
4

r a
ri-
dis-
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Our results for h6 are inconclusive. For HCW’s
h6.0.3 for v.v i follows from scalingLh6^udfu2& data for
v.v i versusj6 /L. However, we obtainh650 for PBC’s.
These two results are clearly contradictory. There are sev
ways out of this. One is that the hexatic phase does exist
we cannot resolve it with systems of some 104 particles, and
that we are picking up effects from the two critical poin
that would exist then. Such effects can be boundary dep
dent@influence from the melting critical point would accou
for the double peakedP(ufu)/ufu curves that are shown in
Fig. 21 for PBC’s for volumes significantly larger thanv i ,
which in turn imply the resulth650 for PBC’s# for small
systems. The other possibility is that the hexatic phase d
not exist for systems of hard disks, and that the nonz
value that we found forh6 in the isotropic phase of system
with HCW’s does not hold right down to the critical poin
That would not be too surprising. We did not try to fit o
data with a volume dependenth6 ~that might vanish rapidly
asv→vm , much as it does for the superfluidity transition
two dimensions, whereh50 for T>T0, and hÞ0 for
T,T0, but h→0 asT→T0 from below @32#, whereT and
T0 are the temperature and critical temperature, resp
tively!. Some interpolation betweenh650 at v5vm and
h6.0.3 at, say,v51.26010.005 would have little effect on
our scaling plots. In any event, we cannot resolve this is
here.

Knowledge ofS(k… might be useful for diagnosing th
existence of the hexatic phase. We do not report data
S(k), except the graphs~for instantaneousconfigurations!
shown in Fig. 14 for HCW’s, and the graphs shown in F
15 for PBC’s. Our data forS(k) do not add anything new to
our conclusions about the hexatic phase. Bagchi, Ander
Swope@25# recently obtained some data forS(k) that sup-
port the existence of the hexatic phase, from MC simulati
of large systems of particles that interact through 1/r 12 pair
potentials. The extent of the hexatic phase they found is q
small: in it, the density can only vary by about 1%. As sta
above, the accuracy of our results does not allow us to
solve something as small as that. There may be a fundam
tal reason for this, as follows from the following simple a
gument. A reasonably well defined number of dislocatio
must be present in the hexatic phase lest its own characte
blurred. But consider the effect of adding just one sin
dislocation to a system of, say, 104 hard disks. It would lead
to distances between rows (100 of them! decreasing by 1%
which is at least twice as large as the effect produced
sweeping through the entire hexatic phase. It would foll
then thatN*(2v/Dv)2 would have to be fulfilled (Dv is
how much the volume can vary in the hexatic phase! in order
for the hexatic phase to be clearly discernible. The syste
we have studied here~of N<15 876) do not quite fulfil this
criterion. On the other hand, Bagchi, Andersen, and Sw
simulated systems of up to 65 536 particles~with softer pair
potential interactions!. That may explain why they can dis
cern a small hexatic phase that we cannot.

We next relate our results to recent work that suppo
first order phase transition. We have already mentioned
this section how our results fit with the ones obtained by L
and Strandburg for small systems from long MC runs@20#:
the trend shown by their data, as system sizes increase
led them to conclude that melting is a first order phase tr
ral
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sition in 2D, is reversed for the larger systems we have st
ied. In addition, no free energy barrier~for the nucleation of
another hypothetical phase! shows up in the data for system
with HCW boundary conditions. On the other hand, Web
and co-workers@22# concluded that melting is a first orde
phase transition in 2D, mainly from MC simulations~of
about 23106 MC sweeps! of systems of 16 384 hard disks
They draw their conclusions from data that differ from ou
Their cumulant curves for subsystems of up to 256 partic
cross atv51.285160.0007. But this point lies in the isotro
pic phase~according to other analysis of their data!. This
contradiction is avoided if a first order phase transition e
sues at some volume larger thanv51.2851, thus preempting
the approach to the critical point further on. This led Web
and co-workers@22# to diagnose a first order transition. Ou
own cumulant curves for different system sizes spread
~see Fig. 22! for v.1.26360.005 andv.1.26760.005, for
HCW’s and PBC’s, respectively. Our cumulant resul
clearly different from those of Ref.@22#, fit well with all of
our conclusions.~The small size of the systems whose cu
mulant values were reported in Ref.@22# may account for the
difference between the results quoted therein and our ow!

Finally, we discuss the relation between the discontinu
in f at v5vm and the lack of a corresponding discontinui
for v. Fluctuations in both of them are large at criticality, b
^(dv)2& vanishes asN→` @see Figs. 5~b!, 6~b!, and 8#,
which implies that there is no volume discontinuity. On t
other hand,^udfu2& does not vanish asN→` @see Figs.
17~b! and 21#, in accordance with a discontinuity in̂f&.
This different behavior might seem somewhat puzzlin
sincev andf fluctuations are strongly correlated. Figure 2
illustrates the point; time evolutions ofufu and ofv, taken
from the same portion of a computer run, are shown fo
system withN51024. Clearly, the system is coherently o
ented at times when the volume is small, and becomes

FIG. 24. ~a! Time evolution of the volumev of a system~with
PBC’s! of 1024 disks forP57.86.~b! Time evolution ofufu, from
the same portion of the run that data points in~a! are taken from.
The ‘‘time’’ is in MC sweeps~given in millions!.
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764 55FERNÁNDEZ, ALONSO, AND STANKIEWICZ
ordered when the volume is larger. In order to underst
how finite fluctuations inf may survive theN→` limit
while finite fluctuations inv do not, consider a system wit
two domainlike regions, each with a given bond orientati
The volume is larger then only because there is a ‘‘dom
wall.’’ ~We use the worddomainloosely here. Similar con-
siderations would apply for disclinations.! Volume incre-
ments accompanying orientational disorder are domainsur-
face effects. Not surprisingly, volume increments can
vanishingly small for fluctuations that takef from a large
value~e.g., 0.74) to a null value at criticality, in macroscop
systems. The results reported here were obtained from
ui
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d
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ns

on a number of work stations that fluctuated, in about t
years time, between about 5 and 15.
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